
DOCUMENT RESUME

ED 359 684 EC 302 244

AUTHOR Burns, Edward
TITLE A Manual for Single Switch and Adaptive Software

Programming. Computer Applications for Students with
Physical, Sensory, Developmental, and Learning
Disabilities.

PUB DATE [90]

NOTE 218p.
AVAILABLE FROM Edward Burns, School of Education and Human

Development, State University of New York at
Binghamton, Binghamton, NY 13902-6000 (Apple program
disk only, $5).

PUB TYPE Guides Non-Classroom Use (055) Computer Programs
(101)

EDRS PRICE MF01/PC09 Plus Postage.
DESCRIPTORS *Assistive Devices (for Disabled); *Computer

Software; *Disabilities; *Electronic Equipment;
*Input Output Devices; *Programing

IDENTIFIERS Apple Microcomputers; *Switches

ABSTRACT
This manual is intended as a guide and source of

ideas for using single switches in adaptive software programming for
people with disabilities who cannot use a traditional keyboard. The
manual and associated program disk are comprised of over 100
programs, routines and files illustrating various uses of single
switch and adaptive input devices. Programs were developed for use on
the Apple family of computers and written in Applesoft BASIC.
Complete program listings of programs on the disk are included in the
manual. After an introduction, individual chapters address the
following topics: (1) single switch fundamentals; (2) single switch
input; (3) low-resolution graphics; (4) sound and speech; (5) single
switch scan techniques; (6) high-resolution graphics; (7) single
switch math; and (8) single switch reading. (Contains 17 references.)
(DB)

Reproductions supplied by EDRS are the best that can be made
from the original document. *

U.S. DEPAINTINNT OF EOUCAT1014
Ot Ice 01 Educational Research and improvement

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

This document has teen reproduced as
received from the cerSOn or organization

ongirmhrqd
0 Minor changes have been made to improve

ref),CidoChon duality

Points Of view oropinions stateo in this docu-

ment do Mat necssarily represent official
OERI position or policy

A Manual for Single Switch and

Adaptive Software Programming

Computer Applications for Students with Physical,
Sensory, developmental, and learning Disabilities

by

Edward Burns

State University of New York at Binghamton

PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERICI

BEST COPY AVAILABLE

2

Adaptive Software Programming

by

Edward Burns

State University of New York at Binghamton

CONTENTS

Introduction 4

1. Single Switch Fundamentals 9

2. Single Switch Input 32

3. Low-resolution Graphics 66

4. Sound and Speech 82

5. Single Switch Scan Techniques 116

6. High-resolution Graphics 133

7. Single Switch Math 170

8. Single Switch Reading 190

References 217

Introduction

Purpose

This manual should be used as a single switch idea book. The manual and
program disk are comprised of over 100 programs, routines and files designed

3

The terms Apple' and ProDOS' are registered trademarks of Apple Computer, Inc.
The terms Echo", Echo III)" and Textalkee are trademarks of Street Electronics

Corporation.

2

4

Introduction

Purpose

This manual should be used as a single switch idea book. The manual and
program disk are comprised of over 100 programs, routines and files designed
to illustrate the many ways in which single switch and adaptive input devices
can be used to meet the learning needs of students.

The programs and techniques described in the manual can be used in the
following ways: 1) to understand the wide range of single switch and adaptive
software applications available; 2) to design single switch software and to
individualize programs to best accommodate specific learning needs; 3) to
teach and illustrate single switch programming; and 4) to provide a source of
readily available and documented single switch BASIC programs and programming
techniques.

Because the Apple computer has been used extensively in the development
of single switch software, various aspects of the Apple are considered in
order to better design and use single switch software. In this respect, the
manual and disk can be used as a toolkit to construct and modify single switch
programs. The program disk contains two complete font sets as well as several
authoring programs for constructing single switch assessment and learning and
activities.

The manual and programs can be used by teachers, professionals and all
those interested in understanding, modifying and individualizing single switch
and adaptive input software. For persons unable to use a traditional
keyboard, single switch software provides a means for meeting a variety of
specific learning needs. By engaging a single switch device, software can be
activated which develops readiness, promotes independent living skills, and
teaches academic content such as reading, math and social studies.

Applications

The applications described in this manual include many single switch

techniques, ranging from simple switch responses to matrix scanning, and
various hardware applications (e.g., using the keyboard to provide switch
input, the Touchwindow). Many different methods for recording switch
responses. The following is a partial list of some of the single switch
concepts considered in the manual:

Single Switch Input Techniques
Single Switch BASIC Programming
Array and Matrix Scanning
Controlled and Automatic Scanning
Creating Single Switch Language Boards
Developing Readiness Skills
Using and Creating Character Fonts
Using Low- and High-resolution Graphics
Single Switch Utilities
Au" ring Systems
Sound and Music
Synthesized Speech
Using Large Type Displays
Creating Shape Tables
Morse Code
Single Switch Database Concepts
Single Switch Math and Reading
Using and Modifying Public Domain Software

4

5

IBM PC Single Switch Conversion Manual

An important goal of this manual is to provide information for better
understanding single switch software, and to be able to individualize software
to meet specific learning needs. Because many single switch software
applications have been written in BASIC, knowing even a little BASIC will help
to best meet individual learning needs. Although the manual does present many
BASIC concepts for better understanding and using single switch software, an
attempt has been made to present all BASIC information in a way that is

directly related to single switch and adaptive software programming.

This manual provides an extremely diverse sampling of single switch BASIC
applications. In addition, many program modifications and techniques for
individualizing programs are presented. However, the purpose of this manual
is not to provide a step-by-step approach for learning BASIC programming, but
rather to understand how BASIC is used to create a wide range of single switch
applications. This manual will to develop single switch software, and to
consider the many ways in which BASIC can be used to meet the varied learning
needs of the single switch user.

All of the programs are written in Applesoft BASIC and can be used with
the Apple family of computers (II+, Ile, IIc or The topics and single

switch applications covered in this manual are intended to encourage

participation. Enter and run the programs; experiment; make modifications;
make changes that are deemed appropriate or useful.

Complete program listings are presented in the manual. These listings
can be used as a basis for developing single switch programs, and to better
understand single switch BASIC software design and applications.

Although single switch software is ideal for individual's in need of an

adaptive input system, many of the applications can be used with students
having diverse learning needs such as the developmentally disabled and
student's with learning and/or emotional disorders. Because single switch
software is often used in conjunction with scan routines and a speech
synthesizer, many applications are suitable for the visually impaired and
students having language disabilities.

An attempt has been made to include a variety of different, albeit easy-
to-use, single switch activities, but there is no doubt that many important
programming ideas are not presented. As a result, and as was said before,
consider this an idea book. Improve the programming routines, and use
whatever information is available to meet each individual's single switch
needs.

Program Disk Sample

If the program disk is available, the following program will provide a
general idea of the types of programs described in the manual and contained
on the disk. As was already said, the programs cover a wide range of single
switch topics and include many single switch utilities, routines for modifying
and enhancing single switch programs and software ideas involving readiness,
nonverbal, assessment, math and reading tasks.

To sample the program disk, insert the disk in drive #1, turn the Apple
to ON, and enter RUN FACE after tho screen prompt] and press RETURN. When

the FACE program is run, each switch response causes an element of the face
to appear on screen.

]RUN FACE

5

Now run the SWITCH FONT program. A word or phrase is first displayed
using a large font character set. When the switch is engaged, feedback is
given by re-displaying the word in various high-resolution colors. After the
screen is cleared, the switch must be disengaged for several seconds before
the next item is presented. The manual provides several ideas for modifying
the program to meet individual student learning needs.

RUN SWITCH FONT

After the last of the five words in the SWITCH FONT program has been
displayed, run the DISCRIM program. This is a three item scanning shape
discrimination task. The object of the program is to select the shape that
is different by engaging the switch when the scan cursor is beneath the shape
that is different. As with most of the programs discussed in the manual,
several modifications are given for individualizing programs.

RUN DISCRIM

The above three programs will provide some idea as to the types of single
switch software contained in the manual and on the program disk. In addition
to describing many single switch concepts, techniques are provided for adding
sound, speech, and for creating and individualizing graphics, for adding
speech and sound, and for designing software to teach reading, math and
curriculum-based skills.

The overall goal is to provide a collection of programs and routines that
will not only provided examples of many single switch software techniques, but
to provided software ideas that can be readily changed to meet individual
single switch learning needs.

Chapters and Disk Programs

The eight chapters in this menial describe over 100 single switch and
adaptive software programs, as 14'11 as many routines to enhance and
individualize programs. Although the chapters can be read in sequence, the
manual can also be used as a reference for better understanding specific
single switch concepts. The information and programs contained in each
chapter are reasonable independent so that the ability to use one chapter does
not necessarily require having read and studied the preceding chapters.

The first two chapters provide background information concerning the disk

operating system, BASIC programming fundamentals, and single switch

techniques. If you are familiar with programming, or simply are interested
in learning more about single switch applications, skip chapters 1 and 2.
However, as is frequently the case, just a little knowledge concerning BASIC
programming will allow you an opportunity to really individualize many
software applications.

The following groups these programs by chapter and specific single switch

content area covered.

Chapter 1

Hello or greeting program:
HELLO

Chapter 2

Demonstration programs:
DEMO ROCKET SWITCH COLOR TEST

6

Utility Programs:
INPUT CHECK HELLO-U DISK MENU

Chapter 3

Low-resolution graphics:
LOWRES SAMPLE LOWRES-SG NILT SCAN TRACKING
Low-resolution graphics applications:
ARCADE JOYSTICK JOYSTICK FEEDBACK TOUCHWINDOW
LOWRES AUTHOR LOWRES 1CREEN MEMORY MOVE
LOWRES SCREEN-2

Chapter 4

Apple-generated sound:
FACE SOUND

Synthesized speech:
TALK SPELLTALK SPELLTALK-2

Language boards:
TALKBOARD-3X3 TALKBOARD-4X4 TALKBOARD-2X2
TALKBOARD-BINARY TALKBOARD-GRAPHICS TALKBOARD-MG

Echo applications:
READTALK WORDTALK MORSE CODE
SWITCH/SCREEN CONNECT

Chapter 5

Single switch scanning:
SCANCOLOR SCAN DRAW LOWRES MATCH
LOWRES NUMBER MATCH LOWRES SCAN

Scanning techniques:
STIMULUS SCANNING OPENSCAN OPENSCAN-2

Chapter 6

High-resolution graphics:
HIRES COLOR DOT-TO-DOT

High-resolution shape construction:
HIRES SHAPES DISCRIM SHAPE TABLE
SHAPE TABLE REVIEW SHAPE TABLE MAKER

Large font graphics:
LASCII DISPLAY FONT SWITCH FONT FONT MATCH
FONT WRITER FONT FEEDBACK RASCII DISPLAY FONT
RASCII SWITCH FONT CUED LANGUAGE

High-resolution single switch applications:
HIRES GRAPHICS HIRES AUTHOR HIRES PAGE SWITCH

Chapter 7

Single switch math applications:
NUMBER COUNT NUMBER MATCH NUMBER CONCEPT
INTERVAL INPUT MATH PROBLEMS OPEN-ENDED SCAN

Large font math applications:
FONT COUNT FONT MATH PROBLEMS

7

Developing single switch math systems:
MATHSCAN SWITCH CALCULATOR

Chapter 8

Single switch reading:
LETTER RECOGNITION CODING READ

Large font reading applications:
SCAN LETTER FONT SCAN WORD FONT

Single switch reading techniques:
SENTENCE CLOZE COLUMN MATCHING

Single switch text reading:
SWITCH READER TEXT FILE MAKER TEXT FILE READER
SWITCH READER-2 READ-2 DOS CONTROL READ AUTHOR
RESULTS READER

Program Disk

For a copy of the Program Disk containing all the programs and utilities
described in this manual, please send $5 to cover the cost of mailing to

Edward Burns
School of Education and Human Development
State University of New York at Binghamton
Binghamton, New York 13902-6000.

8

Chapter 1

Single Switch Fundamentals

Using Single Switch Software

The single switch applications presented in this manual can be used with
individual's requiring an adaptive input system, and students having a variety
of learning, developmental and sensory (e.g., visual) disabilities. The
programs and concepts cover a wide range of topics and difficulty levels. The
applications are intended to be used and modified to demonstrate single switch
applications, and as a program source for meeting the learning needs of
person's requiring an adaptive input system.

Most of the programs can be used with little or no knowledge of BASIC
programming. However, for those interested in being able to modify and
individualize single switch programs, BASIC programming concepts are
considered in the context of a single switch software environment. Many of
these concepts are straightforward, while others are only of use to those with
an interest in certain technical aspects of single switch BASIC programming.
Overall, an attempt has been made to demonstrate how a variety of programming
concepts and strategies can best meet the single switch software needs of a
population which is quite varied with respect to age, ability and adaptive
needs.

Necessary Equipment

In order to use this manual an Apple computer and at least one disk drive

is needed. A printer is optional but is valuable for listing BASIC single

switch programs. An initialized disk is also needed for saving the various
program applications discussed in the manual.

Concerning input devices, a variety of switches can be used to provide
single switch input such as tread, leaf/ puff and mercury switches. In order
to really use single switch software, some type of device for entering single
switch responses is needed. As will be shown in the manual, a joystick or the
keyboard can also be used to provide switch input.

Program Disk

Whenever using and/or modifying single switch BASIC programs, there is

usually a need to save a copy of each program entered or modified on disk.
To save a program on disk an initialized disk is required; that is, a disk
must be used that has been prepared for use with the Apple Disk Operating
System (DOS). If a copy of the program disk containing the major programs
described in this manual is being used, this disk can be used to initialize
blank disks and to save program applications that have been changed or

modified.

Single Switch Connections

If a single switch is being used, the device is connected to the nine-pil:

game port located on the back of the Apple. Many switches require an
interface box. The switch is connected to the interface box and the interface
box is connected to the game port. An interface box is used to read several
different types of single switch input. If an Apple II+ is being used, the

9

10

different types of single switch input. If an Apple II+ is being used, the
single switch is connected to a 16-pin input/output connector located on the
inside of the II+.

If the switch device being used is connected either to the nine-pin game
port or to an Adaptive Firmware Card (AFC) I/O box, make the switch connection
before the power is turned ON. Because the programs in this manual are
designed to read switch input, the NORMAL setup from the AFC extended menu
should be selected.

For many applications, a joystick or joystick button can be used to
provide input similar to that of a single switch device. If a switch or
joystick is not available, a specific keyboard key (e.g., the space bar) can
be programmed to sense a switch response.

Booting Up DOS

To "boot" DOS means to "pull up" DOS (as in pulling up a pair of boots by

the bootstraps). To boot DOS an initialized disk containing DOS must be used.
The program disk that accompanies this manual can be used to boot DOS and to
initialize other disks.

There are three methods for booting DOS once an initialized disk
containing DOS is in drive #1:

1) When the Apple power is switched to ON, the system is automatically

booted. To re-boot the system after the power has been switched OFF, wait 20

seconds or so before turning the power back to ON. To boot DOS using the

program disk, insert the disk in drive #1, turn the power to ON, and after a

bit of buzzing, DOS is booted and the message contained in the HELLO or
greeting program appears, beginning with the following:

A Manual for Single Switch and

Adaptive Software Programming

2) To re-boot the system while in an application, press the following

combination:

Control + open-Apple Key + Reset

For users, the Reset key is designated by a triangle and is located at

the top of the keyboard.

3) If in BASIC programming mode (as indicated by the] prompt), either
of the following re-boots the system:

PR#6 (press RETURN)
IN#6 (press RETURN)

Initializing Disks

There are two versions of DOS which can be used with the Apple. One

frequently used version is called DOS 3.3. A more advanced version of DOS is

also available and is called ProDOS (which stands for Professional. Disk

10

Operating System). The program disk for the collection of single switch
applications in this manual uses DOS 3.3.

BASIC prog?:amming mode is signified by the blinking cursor immediately
to the right of the bracket:

]
In order to initialize a DOS 3.3 disk, insert the program disk or the DOS

3.3 System Master disk in dive #1 (not #2) and boot the system (e.g., turn the
Apple "on"). If the program disk or system master disk is not available, a
disk already formatted in DOS 3.3 can be used to boot up the system.

The first program on the program disk contains the greeting or HELLO
program. After the disk has been entered and the system booted, the HELLO
program can be listed by entering LIST, and a complete listing of the HELLO
program will appear:

To initialize a disk, enter the "greeting" or HELLO program. Each time
the system is booted, the greeting program is automatically run. There are
many ways in which a greeting program can be used in conjunction with single
switch software. The HELLO program on the program disk provides several ideas
for using different BASIC statements for introducing a disk by a series of
screen displays when the HELLO program is first run.

Unless you want to use the program disk HELLO program as the greeting
program for a new disk, clear this program from memory by entering NEW and
then pressing the RETURN key:

]NEW (Press RETURN)

Next, remove the disk containing DOS from the disk drive and insert a
blank disk. To actually initialize the disk the Apple must be in BASIC mode.
This means that the Apple has been booted and is ready to accept and execute
(i.e., run) a BASIC program.

The following program is very simple in that three things happen when the
system is booted and this program is run: 1) the screen is cleared by the HOME
instruction in line 10, line 20 prints a name, and line 30 prints the date
listed.

10 HOME
20 PRINT "Ed Burns"
30 PRINT May 1, 1992"

To initialize a disk using a very simple greeting program, enter NEW to
erase the current program in memory and then enter these lines with the
appropriate information:

NEW
10 HOME
20 PRINT "name"
30 PRINT "month, day, year"

To initialize the blank disk in drive #1, enter INIT and press RETURN.
Be certain when initializing a disk that the disk is blank or is a disk
containing programs no longer wanted. When a disk is initialized, the
previous disk contents of the disk are erased.

INIT HELLO

The red light on the disk drive is appears, and after a bit of disk

11

2

switch BASIC programs.

When a program is entered or modified, the program is often saved on disk
for use at a later time. To save a program on disk, the SAVE command is used
along with a file name. For example, to save a program called DEMO, enter the
following and then press RETURN:

SAVE DEMO

If a program already exists with the file name used to save the program,
the old file is destroyed and replaced by the new file. As a result,
different programs or variations of the same program should be saved using
different file names. To save a modified version of the SWITCH DEMu program,
the following types of names could be used: SWITCH DEMO-1, SWITCH-1, SWITCH
MODIFIED.

Although a file can contain whatever characters are deemed appropriate,
the file name must begin with a letter, cannot contain a comma, and is 30
characters or less. If possible, keep file names to 10 characters or less.
The following are acceptable names: SW, SWITCH #1, SWITCH MODIFICATION.
An example of an unacceptable file name is 3SWITCH or *SWITCH.

The DOS Catalog

Each time a program is saved on disk, the file name is added to the disk
catalog. To display the catalog, enter CATALOG and press return. For ProDOS
user's, either CAT (which provides abbreviated catalog listings) or CATALOG
can be used to list disk programs.

CATALOG

When the disk catalog is displayed, several types of catalog entries are

displayed. The following catalog list is for the program disk containing the
primary programs described in this manual.

DISK VOLUME 254

*A 005 HELLO
A 002 DEMO
A 003 ROCKET
A C')2 SWITCH COLOR
A 003 TEST
A 004 INPUT CHECK
A 003 HELLO-U
A 004 DISK MENU
A 003 LOWRES SAMPLE
A 003 LOWRES-SG
A 004 NILT
A 005 SCAN TRACKING
A 003 ARCADE
A 003 JOYSTICK
A 003 JOYSTICK FEEDBACK
A 002 TOUCHWINDOW
A 006 LOWRES AUTHOR
A 002 LOWRES SCREEN
B 006 YES
A 002 MEMORY MOVE
A 003 LOWRES SCREEN-2
A 004 FACE
A 003 SOUND
B 004 TEXTALKER

12

B 048 TT.OBJ
A 004 TALK
A 006 SPELLTALK
A 007 SPELLTALK-2
A 006 TALKBOARD-3X3
A 006 TALKBOARD-4X4
A 005 TALKBOARD-2X2
A 005 TALKBOARD-BINARY
A 005 TALKBOARD-GRAPHICS
A 006 TALKBOARD-MG
A 008 READTALK
A 006 WORDTALK
A 005 MORSE CODE
A 009 SWITCH/SCREEN CONNECT
A 004 SCANCOLOR
A 004 SCAN DRAW
A 003 LOWRES MATCH
A 004 LOWRES NUMBER MATCH
A 005 LOWRES SCAN
A 005 STIMULUS SCANNING
A 006 OPENSCAN
A 004 OPENSCAN-2
A 003 HIRES COLOR
A 003 DOT-TO-DOT
A 003 HIRES SHAPES
A 1305 DISCRIM
A 003 SHAPE TABLE
A 004 SHAPE TABLE REVIEW
A 004 SHAPE TABLE MAKER
B 015 LASCII
A 003 DISPLAY FONT
A 005 SWITCH MATCH
A 003 FONT MATCH
1 005 FONT WRITER
A 007 FONT FEEDBACK
B 010 RASCII
A 003 RASCII DISPLAY FONT
A 005 RASCII SWITCH FONT
A 006 CUED LANGUAGE
A 004 HIRES GRAPHICS
A 005 HIRES AUTHOR
A 003 HIRES PAGE SWITCH
A 004 NUMBER COUNT
A 005 NUMBER MATCH
A 006 NUMBER CONCEPT
A 005 INTERVAL INPUT
A 004 MATH PROBLEMS
A 004 OPEN-ENDED SCAN
A 003 FONT COUNT
A 006 FONT MATH PROBLEMS
A 009 MATHSCAN
A 010 SWITCH CALCULATOR
A 003 LETTER RECOGNITION
A 005 CODING
A 004 READ
A 008 SCAN LETTER FONT
A 011 SCAN WORD FONT
A 007 SENTENCE CLOZE
A 009 COLUMN MATCHING
A 006 SWITCH READER
A 003 TEXT FILE MAKER
A 002 TEXT FILE READER

13

4

A 006 SWITCH READER-2
A 007 READ-2
A 004 DOS CONTROL
A 007 READ AUTHOR
A 003 RESULTS READER
T 002 CONTROL.SW
T 002 WORDS
T 002 RESULTS

After saving a program on disk, or to see what is on the disk, use the
CATALOG command. The information in the catalog indicates the type of files
on the disk, the relative size of each file, and the name of each file on
disk. Unless otherwise changed (and it usually isn't), the volume number is
always 254. Each catalog entry provides three important pieces of
information: file type, size, and name.

A 002 SWITCH

The A file type shown above signifies that the file is an Applesoft or
BASIC file. Other file types include Binary (B), Integer (I) and Text (T)
files. Only files designated by the letter A can be modified using Applesoft
BASIC.

The number to the right of the file type indicates the size of the file
in terms of sectors. The SWITCH file shown in the above CATALOG entry is
comprised of two sectors. One sector can store what amounts to 256 characters
(e.g., letters, numbers, symbols). In all, each disk can accommodate up to
560 sectors. For each disk, DOS requires 48 sectors and the disk directory
another 16 sectors. Thus, of the 560 sectors on a disk, 496 are available for
use to store programs and files.

The program disk comprising the programs in this manual use 492 sectors,
leaving only 4 sectors free. As a result, if you modify a program, or develop
an application for a specific individual, you will want to do so on a separate
initialized disk. You might also want to save programs on separate disks by
the type of single switch task involved (e..g, a disk for reading programs,
another for language boards), or you might want a separate disk for each
student, or for several student's having similar single switch needs.
Regardless of how you save various program applications, you will want at
least one initialized disk when using the manual and program disk.

The size of a program can effect the speed of the program to process
statements, and the extent to which graphics can be used. What is a large or
small program? The smallest BASIC program requires 2 sectors; programs less
then 10 sectors are in the small category; many programs tend to be in the 10
to 30 sector range; and programs comprised of more than 30 sectors can be

considered large.

Using ProDOS Programs

If you attempt to catalog a disk and the message DISK VOLUME 001 appears,
followed by a bit of unsuccessful disk buzzing and an I/O ERROR (i.e.,
input/output error), you are probably trying to access a ProDOS disk using DOS
3.3 (or vice versa). This will not work. In order to use a BASIC program,
the program must be compatible with the disk operating system in use. Thus,

you will need to convert the ProDOS program to DOS 3,3, or the DOS 3.3 program
to ProDOS.

To transfer a single switch program, application or disk file from a
ProDOS disk to a DOS 3.3 disk or vice versa, first boot the ProDOS User's
Disk. Next, use the DOS <-> PRODOS CONVERSION option to access the CONVERT

14

Disk. Next, use the DOS <-> PRODOS CONVERSION option to access the CONVERT
menu. The first two options from this menu are used to set the directioh of
transfer and the DOS 3.3 slot drive.
When you first access the CONVERT menu, the program is set to convert a DOS
3.3 program in drive 2 to a ProDOS program in drive 1:

Direction: DOS 3.3 S6,D2 ---> ProDOS

To convert a ProDOS file to DOS 3.3, reverse the direction of transfer.
Remember that to transfer files you must transfer from a DOS 3.3 formatted
disk to a ProDOS formatted disk. Consult the ProDOS User's Manual for a
detailed discussion of ProDOS/DOS 3.3 file conversion.

For the most part converted program will work quite well. If a

conversion difficulty does occur, it will probably involve a fairly complex
program which accesses the disk directory or uses random-access files (which
will not convert).

The advantages of DOS 3.3 is ease of use. Insert a formatted DOS 3.3
disk and your in business. The advantages of ProDOS include faster disk
access and use with all types of disks (i.e., hard and fl'ppy). Unless you
have special programming needs, single switch programs using DOS 3.3 will work
just fine.

Renaming and Deleting Files

File names can be re-named by using the RENAME command. If a file is
named DEMO and the name DEMONSTRATION is wanted, enter the following:

RENAME DEMO,DEMONSTRATION

However, be careful not to rename a file using a name already contained in the
catalog. If this occurs, a problem might result when attempting to access
files with duplicate names.

Files can be deleted from the catalog by means of the DELETE command.

DELETE X

Once a file has been deleted, it is gone (unless a program is avail.able which
undeletes files) so be careful when deleting files. To see what deleted files
are on disk, enter the following and press RETURN.

POKE 44505,234: POKE 44506,234

Accidental file deletions can be prevented by locking files using LOCK,
followed by the file name. Locked files (see the catalog shown above) are
designated by an asterisk (*). Locked files can be unlocked by using UNLOCK.

LOCK HELLO

Locked files are shown with an asterisk (*) when the disk is cataloged:

*A 003 HELLO

The DOS 3.3 System Master

In addition to being used to boot or startup the system, the DOS 3.3
System Master disk contains a program called COPYA that can be used to
duplicate or copy disks. If a two drive system is being used, run the COPYA

15

IC

program and set the input values to the default values by pressing the RETURN
key. The screen shows that the original disk is in SLOT 6 and DRIVE 1, and
the duplicate disk (the blank disk) is in SLOT 6 and DRIVE 2. In almost all
cases, the slot #6 (which can be seen when the cover of the Apple is removed)
contains the controller card for the disk.

Before inserting the original disk into drive 1, put a piece of tape over
the notch on the disk. This prevents the accidental destruction of the
original disk. Now put the original disk in drive 1 and the duplicate in
drive 2, press RETURN, and a copy of the original is quickly made.

BASIC Fundamentals
The word BASIC is an acronym for Beginner's All-purpose Symbolic

Instruction Code. BASIC consists of a series of instructions that are given
to the computer to perform a series of tasks. As already discussed, the Apple
system is ready for programming when the bracket and flashing cursor appears.

If an asterisk (*) appears instead of a 1, the system monitor has been
entered. This is a very technical area of the Apple hardware which controls
and supervises how the Apple reads, processes and displays information. If
a greater sign appears (>), the programming mode is Integer BASIC. All the
programs discussed in this manual are written in Applesoft BASIC which is
signified by the right-hand square bracket and blinking cursor. If an * or
> appears, use Control+C or the Control+reset combination to return to
Applesoft BASIC or enter FP (which stands for floating point) and press
RETURN.

One frequently BASIC instruction is the HOME command. Each time this
instruction is given, the screen is cleared and the cursor is positioned in
the upper left-hand corner of the screen. Enter the word HOME after the
bracket and press RETURN:

]H0ME

Display Output

Basic can be used to print strings (i.e., a series of letters or keyboard
characters) and answers to a variety of problems. Enter each of the following
PRINT instructions, press RETURN at the end of each instruction, and note the
result:

PRINT "SINGLE SWITCH SOFTWARE"

PRINT "(PRESS SWITCH TO CONTINUE)"

PRINT "CORRECT!"

PRINT 6+8

PRINT "6+8"

PRINT 8*4

PRINT 40/9

The * symbol in BASIC signifies multiplication and is used in many single
switch programs. In terms of operation precedence, multiplication and

16

division precede addition and subtraction. In the following examples, the ?
is used in place of PRINT (actually enter the ? symbol in place of PRINT):

?"SPELLTALK"
SPELLTALK

?50+4*10
90

The PRINT statement is a much used instruction in BASIC and can perform
many tasks ranging from displaying output, performing calculations and
controlling how output is displayed. The following skips four screen lines
using a series of PRINT statements:

PRINT
PRINT
PRINT
PRINT

Programming statements can also be combined or "compacted" on a single
lines by means of a colon:

PRINT: PRINT: PRINT: PRINT

The advantages of compacting statements include the ability to enter
multiple statements quickly, faster programming speed, and a small reduction

in program memory (i.e., two bytes per line number). The disadvantages
include difficulties in understanding, re-entering, de-bugging compacted
lines. As a general rule, compacting is useful when the statements compacted
are not extremely complex, when there is a need to increase programming speed,
or to reduce the size of the program. In any case, with or without
compacting, a BASIC line cannot exceed 239 characters.

The following uses two compacted PRINT statements to print the string
SCAN SPEED = on one line, and the value 10 on the next line:

PRINT "SCAN SPEED = ": PRINT 10
SCAN SPEED =
10

Punctuation in the print instruction can be used to display screen information

in separate fields. Enter the following statement first with a comma
separating the words in parentheses, then use a semicolon:

PRINT "SINGLE","SWITCH"
SINGLE SWITCH

PRINT "SINGLE";"SWITCH"
SINGLESWITCH

A TAB can be used in a PRINT statement to begin printing in a specific screen

column:

PRINT TAB(35);"SINGLE SWITCH"
SINGLE SWITCH

PRINT TAB(5)"SINGLE"TAB(20)"SWITCH"
SINGLE SWITCH

Variables

Virtually every single switch program written in BASIC uses one or more

17

variables. A variable is simply a name which begins with an alphabetic
character that represents a quantity that can very. In BASIC there are two
types of variables: arithmetic variables and string variables. The variable
ST might be used to designate the amount of "scan time," while N$ is used to
indicate the student's name. Enter the following for an example of each:

ST = 9
PRINT ST
9

N$ = "Elizabeth"
PRINT N$
Elizabeth

Or the name used in variable N$ can be a part of a feedback routine following
a correct answer:

PRINT "CORRECT, "N$"!"

But if you try and mix variables, an error will occur:

ST = "SINGLE SWITCH"
?TYPE MISMATCH ERROR

Arithmetic variables such as ST above can be set to whatever arithmetic
statement or expression follows the equal sign; string variables are set to

whatever is contained between the quotation marks (or the string of

characters).

Just as it is often necessary to set the contents of a variable, there
are occasions when it is also necessary to clear a variable. Arithmetic
variables are cleared by setting the variable to 0, while string variables are
cleared by setting the variable to empty as indicated by two quotation marks

side-by-side.

ST = 0
Wh n.

To clear all the variables in a program, a CLEAR statement car be used.

W$="HELLO"
PRINT W$
CLEAR
PRINT W$

At one time BASIC variables were set using LET:

LET N = 20
PRINT N
20

Although LET might be used in some programs, this instruction is not
necessary and is not used in the programs described in this manual.

Variable Names

Regardless of whether a variable is used to store an arithmetic value or
a string, the variable name must begin with an alphabetic character, and the
name must be 238 characters or less. But using a variable with a 238
character name is not recommended. Actually, only the first two letters are

18

used to distinguish variables. Thus, if the variable SCAN TIME is used to
signify Scan Time, SC would be the actual variable containing the scan time
value. Try the following:

SCAN TIME = 50
PRINT SCAN TIME
PRINT SC
PRINT SCHOOL

In each of the above examples, the value 50 is displayed.

On a few occasions, a 6 might appear immediately after a variable. This
indicates an integer variable and is often used to save space in large
programs when using arrays In any case, variables such as T (arithmetic), T$
(string) and T% (integer) all represent different types of variables.

Finally, concerning variables, certain variable names cannot be used.
The following will result in a syntax error because PRINT is a reserved word.
All words used to provide BASIC instructions are reserved and cannot be used

as variable names:

PRINT = 4
?SYNTAX ERROR

Variable Input

There are several methods frequently used to input data variable
information into a single switch program. The GET$ statement inputs a single
character, while the INPUT statement reads a string of characters. To use
either of these statements, line numbers must be specified.

Video Mode

10 GET KY$: PRINT KY$
RUN
(Press the A key)
A

(Enter RUN and press RETURN)

10 INPUT S$: HOME: PRINT S$
RUN
?A MERCURY SWITCH CAN BE USED AS A SINGLE SWITCH.
A MERCURY SWITCH CAN BE USED AS A SINGLE SWITCH.

The characters displayed on screen can be inverted or displayed in
flashing mode:

INVERSE
PRINT "ADAPTIVE SOFTWARE"
FLASH
PRINT "ADAPTIVE SOFTWARE"
NORMAL

The NORMAL command sets the screen back to the normal display mode. If

the display mysteriously begins to flash or show output in inverse mode, the
problem is probably due to the fact that a NORMAL statement has not been
included in the program.

INVERSE and FLASH mode can also be used to generate a cursor used in

scanning alternatives. A program might have three alternatives (e.g., the
letters E E and H) displayed on screen, two of which are identical and one

19

which is different. A scan or cursor is then used to highlight each
alternative. If the switch is engaged while an alternative is being scanned,
this alternative is treated as the person's response (i.e, the alternative
that is different).

A scan or cursor can be generated by setting a string variable to a
number of blank spaces, and then printing the string of blank spaces in
inverse mode:

C$ = " " (The parentheses enclose three spaces)
INVERSE: PRINT C$: NORMAL

The scan variable can also be set to three spaces by the following:

SC$ = CHR$(32) + CHR$(32) + CHR$(32)
INVERSE: PRINT SC$: NORMAL

Switch Input

Being able to interact with a program is an essential feature of most
single switch programs. The most frequently used method for sensing a switch
response is to connect a switch to the nine-pin game port and then using
PEEK(-16287) to determine whether the switch has been activated. Enter PEEK(
16287) as shown and then press RETURN:

PRINT PEEK(-16287)
32

The value returned should be 32 (or a value less than 128). Now enter
the same statement, but press the open-Apple key (which is the same as
engaging a single switch device) or hold down the switch connected to the game
port while the RETURN key is pressed. The value returned is a number greater
than 127:

PRINT PEEK(-16287)
160

This single instruction, being able to sense whether a switch has been
activated or not, is the basis of the readiness, graphics, academic and
language programs described in this guide. Of all the BASIC instructions that
are used in single switch programming, PEEK(-16287) is one of the most
important.

Just as PEEK(-16287) corresponds to input from the open-Apple key, PEEK(
16286) senses input from a single switch device that corresponds to the
closed-Apple key. Use PEEK(-16286) as was done above to see the type of
numeric values stored in this register.

Strings

The contents of string variables must often be analyzed in terms of

length and individual characters. To determine the length of a string, the
LEN function is used:

X$ = "SINGLE SWITCH SOFTWARE"
PRINT LEN (X$)
22

Individual string characters can be accessed by using the MID$

instruction:

20

21

PRINT M1DS(X$,5,1)
5

PRINT MID$(X$,15,8)
SOFTWARE

The LEFT$ and R1GHT$ instructions can also be used to specify string
segments:

PRINT LEFT$(X$,6)
SINGLE
PRINT RIGHTS(XS,15)
SWITCH SOFTWARE

BASIC has several built-in features that are sometimes used in single
switch programs. The CHR$ instruction returns a keyboard character that
corresponds to the ASCII code entered:

PRINT CHR$(65)
A
PRINT CHR$(66)
B
PRINT CHR$(67)
C

Each keyboard character has a corresponding CHR$ equivalent. A single
switch program might refer to CHR$(27) which signifies the Escape key, to
CHR$(32) which represents the spacebar, to CHR$(65) which signifies the letter
A, or to CHR$(13) which indicates the RETURN key. The CHR$ function can be
used to print all possible keyboard characters, upper- and lowercase
characters, and all nonalphanumeric characters such as the cursor symbol or

CHR$(255). Try the following:

PRINT CHR$(83);CHR$(118);CHR$(105);CHR$(116);CHR$(99);CHR$(104)

The counterpart of CHR$ is the ASC function which returns the ASCII code

for the string variable entered:

PRINT ASC("A")
65

Loops

The ability to perform instructions quickly is an essential feature of

every computer. Enter the following line and press RETURN and the numbers 1
to 100 are displayed in sequential order:

FOR K = 1 TO 100: PRINT K: NEXT K

A variation of the above loop, without the second statement, is often
used to create a pause or delay in the program:

or

FOR D = 1 TO 750: NEXT D

FOR L = 1 TO 1500: NEXT L

A delay loop might be used following screen feedback and before the screen is
cleared and the next item presented.

A loop is often used to read a switch response:

21

FOR SP = 1 TO 500: PRINT PEEK(-16287): NEXT SP

After entering the above line and pressing RETURN, press the open-Apple key
several times to see how switch input is sensed and stored in numerical form.

To read input from the closed-Apple key, enter the following:

FOR L = 1 TO 400: PRINT PEEK(-16286): NEXT L

A Loop can also be used in conjunction with variables in order to set the
length of time a variable is scanned. After entering the following two lines,
re-enter the lines by setting SP to 500. Try pressing the switch or open-
Apple key while the loop is being executed.

ST = 100
FOR K = 1 TO ST: PRINT K" "PEEK(-16287): NEXT

In the above example, the variable K following NEXT has been omitted. This
is sometimes done to increase the speed of a program, although this can make
the logic of a program somewhat difficult to follow (especially if you are not

aware that this programming option is possible).

Screen Position

Displaying information at specific screen locations is important in the

development of all single switch programs. In Applesoft BASIC the

instructions VTAB and HTAB are used to position the cursor at specific
vertical and horizontal screen locations. The Apple screen consists of 24
rows so that VTAB is followed by a value from 1 to 24. To position the cursor
at the 12th row and print a $ symbol, set VTAB to 12.

HOME
VTAB 12
PRINT "$"
VTAB 5: HTAB 10
PRINT "VERTICAL LINE 5"

Graphics

Graphics play an important role in the development of single switch
software and the Apple has two different graphics systems: low-resolution and

high resolution graphics. Enter GR to change the Apple screen to the low-
resolution graphics mode. In this graphics mode there are 15 possible colors
numbered 1 to 15. When low-resolution graphics is first called, the color is

initially set to black.

After entering GR, set COLOR to 15 (white) and the Apple is ready to plot

in low-resolution graphics. Begin by plotting a low-resolution dot in the
center of the screen using the PLOT instruction:

GR
COLOR=15
PLOT 20,10

The PLOT statement can be read as "Put a low-resolution dot in column 20 and
at row 10 of the low-resolution graphics screen." The format for the PLOT
statement is

PLOT COLUMN C, ROW R

22

More low-resolution dots can be plotted by using additional PLOT statements.

PLOT 19,11
PLOT 21,11

The HLIN instruction is used to draw a straight at a specified horizontal
or row screen position:

HLIN 0,39 AT 10

In words, the above instruction reads "draw a low-resolution horizontal line
from column 0 to column 39 in row 10" or

"draw a Horizontal LINe from column 0 to column 39 AT row 10"

Likewise, the VLIE instruction also draw a straight line but at a
specified vertical or column position:

VLIN 12,39 AT 15

This instruction can be interpreted to mean "draw a low-resolution vertical
line from row 12 to row 39 in column 15," or

"draw a Vertical LINe from row 12 to row 39 AT column 15"

If a color monitor is being used, the color can be reset by using one of
the other low-resolution color codes (which includes the codes 0 to 15). Even
if a color monitor is not being used, the following results in a line that is

a slightly different shade because of the differer,....e in screen color
resolution:

COLOR=3
HLIN 22,36 AT 7

As can be seen, with a little effort (and many PLOT statements) an
unlimited number of images can be displayed in different shapes and colors.
If using a color monitor, change the color code and try plotting several low-
resolution dots.

Enter the following to see how a low-resolution screen can be enclosed
in a border:

GR
COLOR=15
HLIN 0,39 AT 0

HLIN 0,39 AT 39
VLIN 0,39 AT 0

VLIN 0,39 AT 39

The second graphics system is called high-resolution graphics. This is
called by entering HGR and then setting the color. While low-resolution
graphics has 15 color codes, high-resolution has only seven. When calling
high-resolution graphics and setting the color, be sure to use HGR and HCOLOR.

To see just how small a high-resolution dot is, enter the HPLOT statement
shown below to display a dot in the center of the screen:

HGR
HCOLOR=7
HPLOT 135,80

High-resolution graphics has considerable programming flexibility when

23

drawing lines in that a line can be drawn between any two coordinates. Enter
the following:

HPLOT 200,10 TO 25,150

where the high-resolution line coordinates are designated using the following
format:

HPLOT COLUMN,ROW TO COLUMN,ROW

In order to leave Apple graphics and re-enter text mode, er'..er TEXT or
Press Control+Reset:

TEXT

PEEK's and POKE's

The Apple's memory consists of a series of registers, and each register
is capable f storing a value. The contents of each register can be viewed
by means of a PEEK. As already discussed, PEEK(-16287) indicates whether or
not a single switch device connected to the nine-pin game port is engaged.
For Apple IIe's and IIc's and II3s's when the switch is open, the value in

PEEK(-16287) is less than 128; when the switch is engaged (or the open-Apple
key is pressed), the value in memory location PEEK(-16287) changes to a value
greater than 127.

Because some software programs use either PEEK(-16287) Dr PEEK(-16286),
an interface box is often used to connect the switch device being used to the

correct-PEEK. If the switch is connected to PEEK(-16287) but the software is
using PEEK(-16286), nothing happens when the switch is engaged. As it is,

PEEK(-16287) is used in most single switch programs and is used throughout
this manual.

Another frequently used PEEK is PEEK(-16384) which is used to read
keyboard input. Enter the following and press RETURN:

FOR K = 1 TO 500: PRINT PEEK(-16384): NEXT

At first the value 13 is displayed. However, when a keyboard key is pressed.
The value displayed is greater than 127. When the A key is pressed, the value
193 appears; and when the Esc key is pressed, the value 155 appears.

PEEK's are also used for special functions. For example, PEEK(-16336)
produces a click, and a series of these click's produces a rather grating

buzzing sound. This is discussed in Chapter 4, but for know enter the
following and press RETURN to sample the Apple PEEK(-16336) "click":

FOR K = 1 TO 50: X=PEEK(-16336): NEXT

A very important use of PEEK's is to examine the contents of a specific

memory register. For example, memory location 78 is constantly changing so
that this memory location is often used to generate random numbers (a

technique which is described in detail in later chapters) Enter the
following to see how location 78 changes:

FOR K = 1 TO 500: PRINT PEEK(78)" ";: NEXT

PEEK's can also be used to supply a wealth of information pertaining to
the screen and general operation of a program. PEEK(37) signifies the
vertical position of the cursor and PEEK(103) + PEEK(104) * 256 the start of
an BASIC program (which is usually 2049).

24

For certain programming activities, the value stored in a register must
be changed. This is accomplished by using a POKE. First enter HOME to clear
the screen, then POKE the value 193 into address 1338:

HOME
POKE 1338,193

The register 1338 is part of the screen display which include. registers 1024

to 2048. The value 193 corresponds to the letter A. Now try this POKE:

POKE 1338,65

This displays the letter A at location 1338 but in FLASH mode.

POKE's can be used in various ways to reset standard settings. Enter the
following and the message is printed in inverse mode. The second poke resets
the text output format to normal mode:

POKE 50,63
PRINT "SINGLE SWITCH SCAN SPEED"
POKE 50,255

Commonly used POKE's include POKE-16368,0 which is used immediately following
PEEK(-16384) to set the strobe back to a value less than 128; POKE 216,0 which
allows normal error messages following an ONERR GOTO; POKE 34,X which sets the
top monitor display margin; and POKE 35,X which sets the bottom monitor
display margin.

CALL Statements

In addition to PEEK's and POKE's, a program might contain one or more
CALL statements. This is a machine language subroutine that begins at the
location specified. The HOME statement previously used has a CALL counterpart
which clears the screen and moves the cursor to the upper left-hand corner.:

CALL -936

And CALL -1184 clears the screen and prints Apple][at the top of the screen.

The following provides a sampling of various CALL statements which can
appear in a single switch application:

CALL -198
CALL -868
CALL -922
CALL -958
CALL -998
CALL -1370
CALL -3100

(Ring bell)
(Clear line from cursor to end of line)
(Move cursor down one line)
(Clear cursor from cursor to bottom of screen)
(Move cursor up one line)
(Boot system)
(Display the high-resolution screen)

This last CALL provides yet another method for booting the Apple system. For

a quick sampling of CALL statements try and determine what happens before the
following is entered and RETURN pressed:

CALL -936: FOR K = 1 TO 10: CALL -198: CALL -922: NEXT

Single Switch BASIC Programs

For the most part , most of the example thus far given has used immediate

25

26

execution mode of BASIC; that is, the statement is executed as soon as the
RETURN key is pressed. In order to realize the full capability of BASIC, and
to save and run programs using DOS, deferred execution must be used. Deferred
execution is used to write a series of statements (i.e., a program), and then
to run the collection of statements as a single BASIC program.

The following is an example of a single statement program:

10 PRINT PEEK(-16287): IF PEEK(-16287) < 128 THEN 10

To "run" or "execute" the program, enter the very important and often
used RUN command and press RETURN.

]RUN

RUN
32
32
32

32

PEEK(-16287) reads the register used to sense single switch input. The
program terminates when the open-Apple or single switch device is engaged.
The advantages of a program are threefold: 1) The program can be used
repeatedly by simply entering the RUN command; 2) specific program lines can
be modified; and 3) the program can be stored on disk for use at a later to
time.

BASIC programs are always executed or run beginning with the lowest
statement number and proceeding upward, unless the program branches to another
statement within the program. The program statements in this manual have been
written in increments of 10. This was done so that additional lines could be
added to programs if necessary. The line increments could have just as well
been 1 or 100 and the programs would function just the same.

The following short program illustrates how BASIC instructions are
processed in a single switch program. When the ready symbol] appears to the
left side of the screen, the Apple is ready for a BASIC instruction. To enter
the first statement, enter 10 HOME after the prompt and then press RETURN to
signify the end of a single BASIC program line:

110 HOME

Immediately after a line has been entered, the bracket appears signifying that

the Apple is ready for the next BASIC instruction. Now enter the following
program, and be sure to press RETURN at the end of each statement:

10 HOME
20 IF PEEK(-16287) >127 THEN 40
30 GOTO 10
40 PRINT "CLOSED SWITCH"
50 GOTO 20

The HOME instruction in line 10 clears the screen and positions the cursor
to the upper left-hand corner of the screen. As discussed above, the really
important instruction is contained in line 20. Every fraction of a second the
Apple checks to see whether a switch connected to the nine-pin game port has
been activated. If a switch has been activated or engaged, the value in
computer location PEEK(-16287) is set to a value greater than 127.

26

When PEEK(-16287) is greater than 127 (or when the open-Apple key
pressed), the program branches to line 40 and the string CLOSED SWITCH
displayed. If the value in location -16287 is 127 or less, control
"looped" back to line 10.

is
is
is

In order to modify the program, the program execution must be interrupted.
The next section describes how to accomplish this, depending on the Apple
system being used.

Interrupting a Program

Being able to "interrupt" a program while a program is running is
important in order to stop the program for one reason or another such as
running another program, or to make program modifications. One method for
interrupting a program is to press Control key and the Reset key at the same
time. For Apple II+ users, press reset. For IIos users, use the

Control+Reset+open-Apple combination.

Interrupt Sequence

Reset
Control+Reset
Control+C
Control+Reset+open-Apple

Apple Model

II+
IIc,IIe
II+,IIe,IIc,IIgs
IIgs

Programs can also be interrupted by pressing Control and the C key at the
same time. If Control+C is pressed and nothing happens, press the Return key
immediately after pressing Control+C. Although Control+C is designated as an
interrupt sequence, if a program is processing an INPUT statement, RETURN must
be pressed after the Control+C combination in order to complete the

interruption process. For the short program shown above, Control+C results
in a statement such as:

BREAK IN 10

The number 10 in the above message indicates the line number that was being
executed when the Control+C was pressed.

Following a program interrupt, and if no program modifications have been
made and no errors have been detected, the program can generally be re-entered
using the CONT command:

CONT

Because commercial software is generally not written in BASIC, these
programs cannot be interrupted and modified as is the case with most BASIC
programs.

Now interrupt the program by pressing Control+C and enter LIST to list

all the program instructions. Modify the program by re-entering line 40 as
shown and then RUN the program again:

MIST

10 HOME
20 IF PEEK (16287) > 127 THEN 40
30 GOTO 10
40 PRINT "CLOSED SWITCH"
50 GOTO 20

]40 PRINT PEEK(-16287)" ";

27

The Escape key is often used to exit a program. This feature is added
to the above program by line 25. The computer scans the keyboard and returns
the decimal value of each key pressed. If Esc is pressed, the value 155 is
generally returned. .If the keyboard strobe is reset by POKE -16368,0 before
each loop iteration, the Esc value 27 is returned (see line 220 of the Input
Check program):

25 KY = PEEK(- 16384)
26 IF KY = 155 THEN 60
60 POKE-16368,0
70 END

Or as follows if POKE -16368,0 is used within a loop:

25 KY = PEEK(-16384)
26 IF KY = 27 OR KY = 155 THEN 60

Entering New Programs

The instruction NEW erases the current program in memory so that a new
BASIC program can be entered. Clear the Apple's memory using NEW and enter
the following brief program which displays the name of the key pressed.

NEW
10 HOME
20 GET KY$
30 PRINT KY$" "ASC(KY$)
40 IF KY$ = "Q" THEN 60
50 GOTO 20
60 END

Although the above program is comprised of only six lines, it can be used
to test the Apple keyboard keys. When run, the character and ASCII value
associated with each keyboard key is displayed when the key is pressed (with

the exception of one key).

The following program illustrates the use of a horizontal scan which can
be used to highlight a series of alternatives in a single switch program:

NEW
10 HOME
20 E$ = "
30 H = H + 10
40 IF H > 30 THEN H + 10
50 VTAB 10
60 HTAB H
70 INVERSE
80 PRINT E$
90 FOR L = 1 TO 1000: NEXT L
100 GOTO 10

Internal Documentation

If a program is relatively short and simple to use, there is no need for
a vast amount of external documentation. For these types of programs, several
sentences might be all that is necessary to explain the purpose and how to use

the program. However, as the complexity and options available within a
program increase, so does the need for additional printed documentation.

In addition to external documentation, a program can be documented

28

internally by adding REM (as in REMark) statements. A REM statement has no
other purpose other than to provide information when reading the BASIC
listing. For the program described above, an internal label can be added to
the program by inserting two REM statements:

5 REM SWITCH
6 REM BY MARY JONES

If a program is fairly long, look for REM statements to help understand
the code. After modifying a program, use a REM statement to record the date

when the program modification was made:

30 REM
40 REM JANUARY 24, 1991
50 REM

If you are wondering whether a particular single switch application is
in the public domain or not, a quick scan of the program listing might provide
not only copyright information but alsc the whereabouts of the author:

10 REM
20 REM SINGLE SWITCH ACTIVITIES
30 REM COPYRIGHT (C) 1992 BY
40 REM EDWARD BURNS
50 REM SUNY-BINGHAMTON
60 REM BINGHAMTON, NY 13901-6000
70 REM

Bugs!

When programming, many factors can prevent a program from doing what it

was intended to do. When this happens, when a program does the unexpected,

or simply does not work, the program has a "bug." And to get rid of a bug (or

bugs), is the business of "debugging."

For a quick lesson on "bugs," enter NEW to clear memory and then HOME to

clear the screen. There are two main categories of bugs that are of

particular concern to all persons using single switch BASIC programs: 1)

statement errors, and 2) conceptual errors. Enter the following line exactly
as shown (be sure to spell HOME with an N as shown):

30 HONE

and when this one line program is run the following error statement appears:

?SYNTAX ERROR IN 30

The vocabulary and syntax used to write BASIC statements must be precise.
Instructions cannot be misspelled and the instructions must contain all the

necessary elements. Enter the following and see what happens when the program

is run:

30 HOME
40 VTAB

The first line clears the screen, but the second line results in an error

statement. The reason for this is that the syntax for the VTAB statement is
the instruction VTAB, followed by a row number (a value from 1 to 24). Try

experimenting with different VTAB values and see what happens (try 14, 0, 24,

25 and then 1). What type of error occurs when VTAB is set to 0 or 25? For

the most part, the majority of errors encountered involve BASIC statement

29

30

errors, especially when copying program listings.

Sometimes a bug can be quite subtle. For example, there is a big
difference between the letter 0 and the number 0. Though it is true that 10+4
equals 14, 10+4 equals ?SYNTAX ERROR.

As opposed to statement errors, conceptual errors occur when a BASIC
statement does exactly what it was specified to do. Unfortunately, this might
not be what is really wanted. Suppose a switch program that is designed to
read PEEK(-16286) to determine whether or not a switch has been engaged. If

the open-Apple key is used to activate the switch, or a switch connected to
PEEK(-16287), the program won't work. This is clearly a conceptual error
relating to how switch input is being read.

When debugging, first determine exactly what the program does in relation
to what the program should be doing. Next, locate the line number in the
program where the error is occurring. In many cases, the line number where
the error is occurring is displayed. If a line contains an error, simply re-
enter the entire line.

BASIC Code Variations

If interested in a detailed discussion of the types of statements which
are used to create Apple BASIC programs, definitely consult the Applesoft
BASIC Programming Reference Manual which is published by Apple Computer.
Concerning BASIC programming manuals, be aware that there are many variations

of BASIC and that these BASIC language variations are not necessarily
interchangeable.

Although different versions of BASIC (IBM, Apple, Commodore, etc.) are
very similar, there are sufficient differences within each version that often
require some (and sometimes many) changes when using one BASIC program with

several different computers. As an example, HOME is used to clear the screen
in Apple BASIC, but -r,S performs the same function in IBM BASIC.

The following is an example of a PC single switch program which is
modeled after the DEMO program described in the next chapter. When this brief

program is run, an open switch is displayed on screen. When the switch is
engaged or a key is pressed, the switch closes. The Esc key is used to exit
the program (see line 100).

10 REM PCDEMO
20 REM
30 CLS
40 STRIG ON
50 X = STRIG (0)
60 LOCATE 10,20
70 PRINT "
80 IF STRIG (1) < 0 THEN 120
90 KY$ = INKEY$
100 IF KY$ = "" THEN 80
110 IF ASC(KY$) = 27 THEN 160
120 LOCATE 10,20
130 PRINT "
140 FOR D = 1 TO 1500: NEXT D
150 GOTO 60
160 END

To run the above program, the following sequence is used:

A>BASICA

30

3 I

10 PCDEMO
20 REM

160 END
RUN

(enter PCDEMO program)

(or use the F2 function key)

To exit BASIC back to DOS, enter SYSTEM and then press RETURN.

There are many similarities between Apple and PC BASIC, yet each version
of BASIC has certain unique characteristics. As can be seen from the above
listing- there are a number of identical Applesoft and PC BASIC instructions.
For t' _ most part, REM, PRINT, FOR/NEXT loops, IF statements (line 110) and
GOTO statements line 140) are virtually the same in the two forms of BASIC.

PC BASIC statements which have similar counterparts in Apple include CLS,
STRIG(0), LOCATE and INKEY$. In line 30 CLS clears the screen just as HOME
does in Apple BASIC. The STRIG (0) function in line 80 is similar to PEEK(
16287) in Apple BASIC, but when the switch is engaged STRIG(0) returns a value
of -1.

The LOCATE statements in lines 60 and 120 sets the cursor position and
takes the place of VTAB and HTAB so that 60 LOCATE 10,20 is equivalent to 60
VTAB 10: HTAB 20. The INKEY$ function scans the keyboard and determines
whether a key has been pressed. The Apple counterpart of INKEY$ is PEEK(
16384).

The STRIG ON statement is unique to PC BASIC. This command must be used
in order to read switch input via the STRIG(1) instruction. As can be seen
from the above listing, there are many equivalent Apple BASIC and PC BASIC
statements. However, for single switch applications, you will invariable need
to modify a BASIC program when converting programs. Also, if a non-IBM system
is being used, you will need to use GW-BASIC or a similar version of BASIC.

31

Chapter 2

Single Switch Input

Demonstration Programs

The primary ingredient that underlies all single switch software is the
use of an adaptive input device which sends a very simple message to the
computer: SWITCH OPEN (no response) or SWITCH CLOSED (response). A variety
of mechanical devices can be used to determine whether or not a response has
been made. The most often used device is a simple plate or tread switch.
When the switch is engaged, a circuit is closed thereby indicating a response
has been made.

Single Switch DEMO Program

To illustrate how a single switch software program works, enter the DEMO
program listing shown below. As mentioned in the last chapter, enter NEW to
clear the programming memory area. If a program disk is being used, the DEMO
program is retrieved from the disk by using either LOAD or RUN. The LOAD
command retrieves the program from disk into memory but does not actually run
the program. This is useful when modifying a program or to check a program
listing. The RUN command retrieves the program from disk and then immediately
runs or executes the program.

NEW
RUN DEMO

The switch DEMO program illustrates the general format used by many of
the programs contained in this manual. Enter the program as shown and then
run the program:

10 REM DEMO
20 REM
30 HOME
40 VTAB 12: HTAB 14
50 PRINT "
60 IF PEEK (-16287) > 127 THEN 90
70 IF PEEK (-16384) = 155 THEN 130
80 GOTO 60
90 VTAB 12: HTAB 14
100 PRINT "
110 FOR D = 1 TO 750: NEXT D
120 GOTO 40
130 POKE -16368,0
140 END

When the DEMO program is run a graphic image signifying an open switch
appears on the screen. If a single switch device is connected to the Apple,
activate the switch and the switch displayed on screen closes. In line 60
when the switch is engaged, PEEK(-16287) is set to a value greater than 127

and the program branches to line 90. If a single switch device is not
connected to the game port, the open-Apple key provides the necessary switch

input. To exit the program, press the Esc key.

(open switch)

Note that holding the switch down in a continuous manner results in a

32

continuous series of screen activities (i.e., the opening and closing of the
switch displayed). A method for requiring distinct switch movements (engaging
and then releasing the switch) is discussed shortly.

(closed switch)

Run the program by using both discrete and continuous switch responses.
Exit the program by pressing the Esc key. The numerical code for the Esc is
155. In line 70, if the Esc key is pressed, the number 155 is stored in
memory location -16384. When the contents of register -16384 is 155, control
is branched to line 130, the keyboard is cleared by the POKE in line 130, and
the program ends in line 140.

The following is a line-by-line description of how the program works.

The delay loop in line 110 results in a delay of approximately one second.
Changing the loop to

110 FOR D = 1 TO 1500: NEXT D

results in a delay of approximately two seconds.

10 REM DEMO

20 REM

30 HOME

Remark statement with name of
program

Remark statement used to space
listing

Clears screen

40 VTAB 12: HTAB 14 Positions cursor to the 12th line
and 14th column

50 PRINT " Displays open switch on screen

60 IF PEEK (- 16287) > 127 THEN 90 Sends control to line 90 if open-
Apple is pressed

70 IF PEEK (16384) = 155 THEN 130 Branches to line 130 if Esc is
pressed

80 GOTO 60 Branches to line 60

90 VTAB 12: HTAB 14 Positions cursor to the 12th line
and 14th column

100 PRINT "

110 FOR D = 1 TO 750: NEXT D

120 GOTO 40

130 POKE -16368,0

140 END

Displays closed switch

Delay loop

Branches to line 40

Clears keyboard strobe

Ends program

The value in line 70 used to indicate whether or not a keyboard key has
been pressed is sometimes written as

70 IF PEEK(-16384) > 27 + 128 THEN 130

33

The ASCII value for the Escape key can be either 27 and 155. ASCII
values are divided into two sets: low ASCII values and high ASCII values. The
low values are 0 to 127, and the high values range from 128 to 255. The high
ASCII value which corresponds to the low ASCII value can be found by adding
128 to the low value (e.g., 27 + 128). However, although 65 and 65 + 128 both
represent the letter A, the Apple does not recognize the two as the same
character...strange but true.

The END statement shown in line 140 is not required in that programs will
automatically end when there are no more executable program lines. However,
a program will immediately end when an END statement is encountered regardless
of where that statement is located within a program.

Listing a Program

Whenever a program is entered, or modifications made, it is always a good
idea to list the program in order to check for possible bugs. Substituting
one letter for another, or entering a period instead of s colon can result in
a program error. The

LIST

When the DEMO program

10
20
30
40
50

entire program can be listed

is listed, the following

REM D2MO
REM
HOME
VTAB 12: HTAB 14
PRINT "

by entering LIST:

should appear:

60 IF PEEK (- 16287) > 127 THEN
90

70 IF PEEK (- 16384) = 155 THEN
130

80 GOTO 60
90 VTAB 12: HTAB 14
100 PRINT "
110 FOR D = 1 TO 750: NEXT D
120 GOTO 40
130 POKE - 16368,0
140 END

The list of the program might be somewhat different than hc,v the program
was entered for two reasons: First, spaces are automatically inserted between
BASIC instructions. Second, the Apple uses its own Let of rules for

determining how long a line displayed on screen is before the line is

continued on the next screen line. Re-enter line 40 with no spaces as
follows:

40VTAB12:HTAB14

and then list the single line 40 by entering LIST followed by the line number:

LIST 40

and the line is displayed as:

40 VTAB 12: HTAB 14

To see a section of the program, or a series of program lines, the LIST
command can be used to focus on specific program segments. Try the following
commands to list different program segment rnd note what each command prints:

34

LIST
LIST-50
LIST 30-80
LIST 60-

As indicated by the above, LIST-50 lists the first 50 lines of the
program (or lines 10, 20, 30, 40 and 50 in the above program); LIST 30-80
lists lines 30 through 80; and LIST 60- lists all lines beginning with line
60 to the last line of the program.

To stop a program listing (a useful technique for longer programs or when
scanning a listing), use Control+S. Using this combination a second time
resumes the listing:

CONTROL+S

To terminate a list in progress, use Control+C:

Printer Listing

If a printer is available, and the printer is in the usual #1 slot, enter
PR#1 and then use the LIST command to "dump" the program listing to the
printer:

PR#1
LIST

As discussed above, the LIST command can be used to print partial
listings via the printer. If a listing has been dumped to the printer, enter
PR40 to return output to the screen rather than the printer (or use

Control+Reset):

PR#0

Screen Speed

The Apple lists lines at a fairly rapid rate. The system speed can be
slowed by using the SPEED command. This can be very useful as a very quick
and simple method for slowing down single switch applications, or when
debugging a program. The following setting substantially slows down the rate
characters are displayed on the screen:

SPEED=125

The SPEED rate can very between 0 and 255. The normal SPEED rate is 255 and
is automatically set when the system is first booted:

SPEED =O (very slow)

SPEED=125 (slow)

SPEED=255 (normal)

To determine the speed setting currently in use, enter the following:

PRINT 256 - PEEK(241)
255

IIGs Users

35

Most software applications designed for the IIc and Ile run without
difficulty using a II:s and vice versa. However, certain machine language
programs developed using the IIc and IIe can sometimes cause the computer to
"hang" (no keyboard keys seem to work) and leave no other option but to re-
boot.

For II :s users an extremely important feature to consider is the
control panel. After the IIGs has been booted, the control panel can be
entered by pressing

open-Apple + Control + Esc

The control panel contains the following options:

Display
Sound
System speed
Clock
Keyboard
Slots
Printer Port
Modem Port
RAM Disk
Mouse Disk

Quit

If a single switch software applications is running very fast when using

a I1 the system program speed might be set to FAST. Reset the system speed

to NORMAL and all should run as expected.

Discrete Response Input

The DEMO program illustrates how a single switch device works, but as the

program is now written there are several potential problems. One area of
particular concern is the fact the program does not require discrete switch

responses. Press the switch or hold down the open-Apple key and notice that
the screen switch displayed is activated continuously as long as the switch

is engaged.

Whether or not a single switch program should require discrete switch
responses (i.e., the switch must be released before a second switch response
can be registered) depends on the age and cognitive ability of the child or
student and the nature of the program. For an older student able to use a
single switch program to develop advanced reading skills or to develop mastery
in a content area, the need for building into the software a routine that
requires discrete switch responses is not a major concern. However, for a
younger student who exhibits random keyboard behavior, a routine that prevents
random or continuous switch responses might be extremely valuable.

There are several programming techniques that can be used to require

distinct switch responses. One method is to evaluate the status of the switch
prior to the switch input that is used to initiate a screen activity or
immediately after the screen event has occurred. IF line 55 is added to the
DEMO program, the program will hold at line 55 as long as the switch is

closed:

55 IF PEEK(-16287) > 127 THEN 55

When line 55 is added and the program run, the program first checks to

36

see if a the switch is closed. If the switch is activated or pressed, the
statement continues to branch back to the same line. In other words, the
program stalls until the switch or circuit is open.

Now delete line 55 and add line 95

55
95 IF PEEK(-16287) > 127 THEN 95

When this switch check is added after an actual switch response has been
detected in line 60, the switch must be released before the screen activity
occurs (i.e., the closed switch is displayed via line 100). For the first
switch check, the switch must be open before a switch response can be made
causing a screen activity to occur. For the second switch check, the switch
is engaged and then must be released before the activity occurs.

A third switch check can be inserted in line 115:

95
115 IF PEEK(-16287) > 127 THEN 115

When the program is run with this check in place, a switch response
causes the screen switch to close, but the switch must be released before the
screen switch appears in the open position.

Yet another method for requiring discrete switch responses is to add a
routine that evaluates the switch immediately after a switch response has been

made. The program is held in this routine until the switch has been released.
To illustrate, make these modifications:

114 FOR L = 1 TO 50
115 IF PEEK(-16287) > 127 THEN 114
116 NEXT L

This routine creates a loop so that immediately after a switch response
is made, the status of the switch is evaluated the number of times specified
by the second delimiting value in the loop (value 50 in line 114). For the
above loop, the switch is evaluated 50 times. If the switch is engaged while
in the loop, the loop begins anew with a new cycle of 50 switch evaluations.
As long as the switch is engaged, the program does not leave this "holding"

routine. If the switch is open for 50 iterations, the program moves to the

next program component.

The advantage of a loop rather than a single evaluation is that not only

must the switch be open after a response, but the switch must be open for a
specified period of time. Thus, hitting the switch quickly and repeatedly
does not cause the program to leave the delay routine. Experiment with the
above delay routine with different types of switch responses. Also, change
line 114 so that the loop contains a smaller or larger number of iterations:

114 FOR L = 1 TO 25 (fewer switch loop iterations)

114 FOR L = 1 TO 100 (more switch loop iterations)

For very young children, or students unfamiliar with computers, requiring
discrete switch responses might not be necessary. Indeed, for some students,

any type of response might be encouraged whether it be discrete, continuous
or completely random! However, as the child or student progresses, an attempt
should be made to develop the ability to provide, if possible, discrete switch

responses.

Sometimes a variable is used to temporarily store the contents of the

37

C:ST COPY AVAILABLE

switch register. In the following example, the contents of PEEK(-16287) is
stored in variable X and then X is evaluated.

60 X = PEEK(-16287)
65 IF X > 127 THEN 90

Lines 60 and 65 could also be compacted using one line number:

60 X = PEEK(-16287): IF X > 127 THEN 90

Using a variable to evaluate a response is frequently used with PEEK(-
16384) when determining whether or not a keyboard kf.y has been pressed. In

the DEMO program the variable KY can be set to the value in PEEK(-16384). If

KY is greater than 127, the program branches to line 85, the keyboard strobe
is reset so that the next keyboard response can be read, and the value in KY

is then checked for an Esc response in line 86:

70 KY = PEEK(-16384): IF KY > 127 THEN 85
85 POKE -16368,0
86 IF KY = 155 THEN 130

If KY is equal to 155 (Escape), the program ends. However, all other
keyboard responses are treated as switch responses by the program. This
modification allows any keyboard key (other than the Esc key) to provide
single switch input. As a result, simply being able to hit any keyboard key
serves as a single switch response.

ln
20
30
40
50
60
70
80
85
86
90
100
110
120
130
140

REM DEMO
REM
HOME
VTAB 12: HTAB 14
PRINT "

90
> 127 THEN 85

IF PEEK(-16287) > 127 THEN
KY = PEEK (-16384): IF KY
GOTO 60
POKE -16368,0
IF KY = 155 THEN 140
VTAB 12: HTAB 14
PRINT "
FOR L = 1 TO 750: NEXT L
GOTO 40
POKE -16368,0
END

To understand the function of POKE -16368 (line 85) which appears in many
single switch program, change line 85 as follows:

85 PRINT KY

Now run the program and press a key. The decimal corresponding to the key is
displayed, but the switch opens and closes continuous-7y! The reason for this
is that PEEK(-16384) is set to a value greater than 127 when a key is pressed,
but PEEK(-16368) is not used to reset PEEK(-16384) back to a value equal or

less than 127.

When looking for the switch routine in a listing, memory location 131EK(-

16287) or sometimes PEEK(-16286) generally indicates the segment of the
program that is used to sense the switch response. Nonetheless, determining
just how the response is being read is not identical for all programs. As an

example, in the following example variable X is set to 1 if the value in
PEEK(-16287) is greater than 127. In the next statement X is evaluated, and
if it is equal to 1, this signifies that tne switch has been engaged. In

38

other words if PEEK(-16287) is greater than 127 (i.e., the switch is engaged),
X is set to 1:

60 X = PEEK(-16287) > 127 (If PEEK(-16287) is greater than
65 IF X = 1 THEN 90 127 THEN X = 1)

Sample Routines

Variations of the DEMO program can be created to provide a very simple
cause/effect switch program. The program listed below displays a rocket
moving upward each time the switch is engaged. Also note how a graphics
effect can be created by using simple print statements. Line 100 could also
be entered as

or as

100 HTAB 18: PRINT "*";SPC(3);"*"

100 HTAB 18: PRINT "*";CHR$(32);CHR$(32);CHR$(32);"*"

10 REM ROCKET
20 REM
30 HOME
40 IF PEEK(-16287) > 127 THEN 40
50 IF PEEK(-16287) > 127 THEN 80
60 IF PEEK(-16384) = 155 THEN 240
70 GOTO 50
80 VTAB 22: HTAB 20: PRINT "*"
90 HTAB 19: PRINT " * *li

100 HTAB 18: PRINT "* *.

110 HTAB 17: PRINT "
120 FOR J = 1 TO 7
130 HTAB 17: PRINT "* *.

140 NEXT J
150 HTAB 17: PRINT "
160 PRINT
170 HTAB 18: PRINT "
180 HTAB 19: PRINT "***"
190 HTAB 20: PRINT " **
200 FOR L = 1 TO 24: PRINT
210 FOR D = 1 TO 250: NEXT D
220 NEXT L
230 GOTO 40
240 POKE -16368,0
250 END

This program illustrates the shell of many cause and effect single switch
programs. For each distinct switch response, control is sent to line 80 where
the screen event routine begins. Following the event, control is re-directed
back to line 40 and another switch response is read. If the Escape key is
pressed while in the switch loop (line 60), the keyboard strobe is cleared in
line 240 and the programs ends (line 250).

10 REM
20 REM
30 HOME
40 IF PEEK(-16287) > 127 THEN 40
50 IF PEEK(-16287) > 127 THEN 80
60 IF PEEK(-16384) = 155 THEN 240
70 GOTO 50
80

39

230 GOTO 40
240 POKE -16368,0
250 END

Instead of having a rocket blast off, the alphabet could be listed, the
screen color changed, or a graphic image displayed each time the switch is
engaged. An important point to remember is that although a distinct response
is required to initiate the event, there is absolutely no way to determine (by
the switch response alone) whether the screen event is understood or, for that

matter, in what way the screen event is understood.

Try Thserting the following routines as shown below. These routines are
designed to illustrate a variety of BASIC statements when used in conjunction
with a single switch program. Before adding each routine, delete lines 80 to
220.

DEL 80,220

Routine #1: VTAB & HTAB Screen Position
80 V = INT(RND(1)*24+1)
90 H = INT(RND(1)*40+1)
100 VTAB V: HTAB H
110 INVERSE
120 PRINT " *M
130 NORMAL

Routine #2: FLASH Screen Characters
80 V = INT(RND(1)*24+1)
90 H = INT(RND(1)*40+1)
100 VTAB V: HTAB H
110 FLASH
120 PRINT "!"
130 NORMAL

Routine #3: Upper-case ASCII Characters
80 C = C+1
90 IF C > 26 THEN C = 1
100 L$ = CHR$(64+C)
110 PRINT L$" ";

Routine #4: ASCII Numbers
80 C = C+1
90 IF C> 10 THEN C= 1
100 L$ = CHR$(47+C)
110 PRINT L$" ";

Routine #5: ON X GOTO Routines
80 C = C+1
90 IF C > 3 THEN C = 1
100 ON C GOTO 110,130,150
110 PRINT "1"
120 GOTO 230
130 PRINT "2"
140 GOTO 230
150 PRINT "3"

Routine #6: Screen Movement
80 HOME
90 L$ = "AUGMENTATIVE COMMUNICATION"

40

100 H = H+1
110 IF H > 40 THEN H = 1
120 VTAB 10
130 HTAB H
140 PRINT " "L$

Routine #7: Low-resolution Graphics
80 GR
90 R = INT(RND(1)*15+1)
100 COLOR = R
110 FOR K = 0 TO 39
120 HLIN 0,39 AT K
130 NEXT K

Routine #8: Low-Res VLIN and HLIN Commands
80 GR
90 P = INT(RND(1)*40)
100 C = INT(RND(1)*15+1)
110 COLOR=C
120 IF RND(1) > .5 THEN 150
130 VLIN 0,39 AT P
140 GOTO 230
150 HLIN 0,39 AT P

Routine #9: Displaying Low-res Color Screens
80 GR
90 FOR K = 0 TO 39
100 C = INT(RND(1)*15+1)
110 COLOR= C
120 hLIN 0,39 AT K
130 NEXT K

Routine #11: Low-resolution kaleidoscope:
10 GR
20 FOR L = 1 TO 3
30 FOR K = 0 TO 39
40 R = INT(RND(1)*15+1)
50 COLOR=R
60 HLIN 0,39 AT K
70 HLIN 0,39 AT 39-K
80 VLIN 0,39 AT K
90 VLIN 0,39 AT 39-K
100 NEXT K
110 NEXT L

Routine #10: High-resolution Graphics
35 HGR
80 C = INT(RND(1)*7+1)
90 HCOLOR=C
100 RR = INT(RND(1)*160)
110 RC = INT(RND(1)*280)
120 HPLOT RC,RR

Single Switch Input Techniques

There are many different techniques that can be used to input a single
switch response. The SWITCH COLOR program shown below uses the low-resolution
graphics capability of the Apple in conjunction with a typical single switch
input format to c,Iange the screen color displayed each time the switch is
engaged.

41

10
20
30
40

REM SWITCH COLOR
REM
HOME
GR

50 IF PEEK(-16287) > 127 THEN 50
60 IF PEEK(-16287) > 127 THEN 90

70 IF PEEK(-16384) = 155 THEN 150
80 GOTO 60
90 C = C+1: IF > 15 THEN C = 1
100 COLOR=C
110 FOR J = 1 TO 39
120 HLIN 1,39 AT J
130 NEXT J
140 GOTO 50
150 TEXT: HOME
160 POKE -16368,0
170 END

The GR statement in line 40 indicates that low-resolution graphics rather
than normal screen text is used. The low-resolution color is determined in
line 100 where COLOR is set to the value of C. For low-resolution graphics
there are 16 possible color codes ranging from 0 (black) to 15 (white.).

The SWITCH COLOR program presents the 15 different color codes as
determined by line 90. Each time the switch is activated, the variable C is
incremented by 1 and the screen color is set to C in line 100. The program
continues to run until the Esc key is pressed. Chapter 3 provides many
additional low-resolution single switch software applications.

Using the Keyboard as Switch

As was shown with the DEMO program, PEEK(-16384) can be used to determine
whether or not a key has been pressed by scanning the keyboard for a possible

response. This feature can also be used with the SWITCH COLOR program so that

any key can be used to provide switch input.

For some individuals unable to use a keyboard in the traditional manner,
the ability does exists to use the SPACEBAR or to simply hit one of the
keyboard keys when a switch response is required. The following lines are
used to scan the keyboard and if a key is pressed, the key code is stored in

variable KY. If KY is greater than 127, control is sent to line 85 and the
response is interpreted as a switch response.

70 KY = PEEK(-16384): IF KY > 127 THEN 85
85 POKE -16368,0

After a keyboard key has been pressed, the value in location PEEK(-16384)
is not changed until a new key is pressed or until the statement in line 85
sets the keyboard strobe to a value 127 or less.

The variable KY could be used to either exit the program, or to sense a
switch response as shown by these modifications:

70 KY = PEEK(-16384): IF KY = 155 THEN 150
75 IF KY > 127 THEN 85
85 POKE -16368,0

A specific keyboard key could be designated as the source of single
switch input by modifying line 75. For example, the code for the SPACEBAR is
160. The following modification causes the SPACEBAR to be treated as a switch

response (in addition an actual switch response).

42

75 IF KY = 160 THEN 85

To display the keyboard values corresponding to each key as the various
keys are pressed, enter the following:

86 PRINT KY

Response Prompts

The above program can be modified to first display a program title, and
then prompt the student to press the switch in order to begin the task:

31 VTAB 7: HTAB 15
32 PRINT "SWITCH COLOR"
33 VTAB 20: HTAB 9
34 PRINT "(PRESS SWITCH TO CONTINUE)"
35 IF PEEK(-16287) < 128 THEN 35

The switch response is read via a single line loop: the program leaves
line 35 only when a response has been detected. In other words, as long as
the value in PEEK(-16287) is less than 128, line 35 is read continuously.
When the value in PEEK(-16287) is greater than 127, control is sent to the
next program line.

A convention seems to have developed among single switch programmers to
use the negative for referencing accessing memory locations to sense single
switch input: PEEK-(16287) (the most frequently used) and PEEK(-16286).
Instead of using the negative value, these same registers can be identified
by using PEEK(49249) and PEEK(49250) so that:

PEEK(-16287) = PEEK(49249)
PEEK(-16286) = PEEK(49250)

If the statement in a program is using PEEK(49249), this is the same as
using location PEEK(-16287) or the open-Apple key. The actual memory location
for registers shown as a negative can be found by adding 65536 to the negative
so that -16287 + 65536 = 49249.

DECIMAL LOCATION = 65536 + (-16287)

A joystick can also be used to provide single switch input. First
connect the joystick to the nine-pin game port. With the COLOR program still
in memory, add line 65:

65 IF PDL(0) < 50 THEN 90

The PDL(0) function reads the left-right movement of the joystick. If

the joystick is in center position, the joystick sends a decimal value of
about 125 to the computer. If the joystick is moved far left, a value of 0
if sent; and if the stick is moved far right, a value of 255 is sent. If

necessary, adjust the axis trim control for the degree of joystick sensitivity

required.

To read either a left or right movement, change line 65 as follows:

65 IF PDL(0) < 50 OR PDL(0) > 200 THEN 90

While PDL(0) reads the left-right joystick movement, PDf,(1) reads the up-

down movement. Moving the stick forward decreases the value of PDL(1), and
moving the stick backward (which is a manageable movement for some students)

increases this value. The following results in a switch response when the

43

stick is moved in a backward direction:

65 IF PDL(1) > 200 THEN 90

Add line 66 to see the value of PDL(1) as the stick is being moved:

66 VTAB 22: PRINT PDL(1)" 11

Displaying the contents of PDL(0) and/or PDL(1) at the bottom of the screen
while a programming is running can be use when setting the joystick trim
controls. With the above modifications in place, note the value displayed by

PDL(1). Now adjust the up-down trim control and see how this value varies.

In most situations, the trim controls should be set so that the value
displayed by PDL is approximately 127.

To include up-down as well as left-right joystick movements, the

following could be added:

65 IF PDL(0) < 50 OR PDL(0) > 200 THEN 90
66 IF PDL(1) < 50 AND PDL(0) > 200 THEN 90

Nctice also that one of the joystick buttons is the same as engaging the

open-Apple key or PEEK(-16287).

If desired, a Touchwindow can be used to provide single switch input.

The PDL function is used to read Touchwindow input. However, when a
Touchwindow is connected to an Apple, the beginning value returned by PDL is

5. If the left side of the window is touched, the value returned is between

5 and 125. The value returned by the Touchwindow increases as the window
senses input from left to right.

Line 65 is set to read Touchwindow input as follows:

65 IF PDL(5) > 5 THEN 90

The following table describes the various methods for sensing single
switch input.

Switch Input Mode Switch Type

PEEK(-16287) or PEEK(49249) switch #1, open-Apple key, switch button

PEEK(-16286) or PEEK(49250) switch #2, closed-Apple key, switch button

PEEK(-16384) or PEEK(49152) keyboard input, Esc key input,

PDL(0) paddle #1, joystick, Touchwindow,

PDL(1) paddle #2, joystick, Touchwindow

Switch Access Problems

If a single switch device is connected to the nine-pin game port, and the
software is compatible with the switch wiring, there should have no problem
rurwing the single switch software application. If the switch is wired to
PEEK(-16287) and the software is using PEEK(-16286) to read switch responses,
the switch or the software must be changed. Use the INPUT CHECK program
described below to determine what software switch source is being used by the

switch device connected to the game port, and then list the program to
determine what switch is being used by the software application.

44

If an adaptive firmware card is being used, several things can happen to
prevent a software application from running. If the switch is connected to
the adaptive firmware card, and the software application runs continuously
without so much as a look at the switch, be sure that nothing is connected to
the nine-pin game port. Also, make sure that the Adaptive Firmware Card has
been set for either the NORMAL or SW INPUT mode from the extended menu.

If an Apple II+ is being used, single switch input is not sensed as with
more advanced Apple models. When a program is run with an Apple II+, the
program might very well run continuously as if a switch is being continuously
engaged. And this is exactly what is happening.

If PEEK(-16287) is being used with a IIe, IIc, or IIgs when switch 41 is
engaged, a value greater than 127 is sent to the computer. The opposite is
true for the II+. When a switch is engaged for this model, a value less than
128 is sent which means that the current value in PEEK(-16287) is already
greater than 127.

If using a II+, potential input problems can be solved by changing the

switch input statement as follows:

should become

60 PEEK(-16287) > 127 THEN 90

60 PEEK(-16287) < 128 THEN 90 (II+ single switch input)

The switch color program described above would be changed as shown below

when using an Apple II+:

10 REM SWITCH COLOR II+
20 REM
30 HOME
40 GR
50 IF PEEK(-16287) < 128 THEN 50

60 IF PEEK(-16287) < 128 THEN 90
70 IF PEEK(-16384) = 155 THEN 150
80 GOTO 60
90 C = C+1: IF > 15 THEN C = 1
100 COLOR=C
110 FOR J = 1 TO 39
120 HLIN 1,39 AT J
130 NEXT J
140 GCTO 50
150 TEXT: HOME
160 PORE -16368,0
170 END

If a switch is not available and a II+ is being used, use the keyboard

to provide switch input by adding these lines:

75 IF PEEK(-16384) > 127 THEN 85
85 POKE -16368,0

If an application is being used with both a II+ and a more recent Apple

model, the following modification will indicate whether a IIF is being used;
that is, if register 64435 is not equal to 6, then the Apple being used is a

II+. This information can be used to set the switch for either a II+ or

IIe/IIc/IIgs models:

42 IF PEEK(64435) < > 6 THEN 50
43 IF PEEK(-16287) > 127 THEN 43

45

44 IF PEEK(-16287) > 127 THEN 90
45 IF PEEK(-16384) = 155 THEN 150
46 GOTO 44
50 IF PEEK(-16287) < 128 THEN 50
60 IF PEEK(-16287) < 128 THEN 90
70 IF PEEK(-16384) = 155 THEN 150
80 GOTO 60
90 C = C+1: IF > 15 THEN C = 1
100 COLOR=C
110 FOR J = 1 TO 39
120 HLIN 1,39 AT J
130 NEXT J
140 GOTO 50
150 TEXT: HOME
160 POKE -16368,0
170 END

Continuous Activity Response

For the most part, the ability to initiate a screen activity by means of

a discrete response is generally the preferred response. However, this does
not mean that there is not a place for routines that allow for a continuous
response. For beginning users, any type of response, be it discrete or
continuous, should be allowed. The single switch user must first understand
that there is a relation between engaging a switch and a screen activity.
After this relationship has been demonstrated by observing the individual
engage the switch to initiate a screen activity, the switch response can be
restricted to require discrete responses.

To develop the ability to engage a switch for an extended period of time,
a continuous activity or reverse switch response can be used. As shown in the
modified SWITCH COLOR program below, line 115 has been added so that the
screen activity stops when the switch is disengaged. This modification
encourages the student to hold the switch in the closed position until the
screen event has been completed.

10 REM SWITCH COLOR
20 REM
30 HOME
40 GR
90 C = C+1: IF > 15 THEN C = 1
100 COLOR=C
110 FOR J = 1 TO 39
115 IF PEEK(-16287) < 128 THEN 115
116 IF PEEK(-16384) = 155 THEN 150
120 HLIN 1,39 AT J
130 NEXT J
140 GOTO 90
150 TEXT: HOME
160 POKE -16368,0
170 END

The point at which the action is interrupted when the switch is

disengaged can be further specified by enclosing the switch response in line

115 in a loop:

114 FOR D = 1 TO 5
116 NEXT D

The above continuous activity response (i.e., a response is required to
continue the screen activity) is easily changed to a reverse activity response

46

in which the switch is engaged to stop the activity by modifying line 115.

115 IF PEEK(-16287) > 127 THEN 115

The are really a great many types of switch responses that can be

specified within a program. In single switch programming there is a place for
every type of switch response. What must be done when using single switch
software is to always consider the type of switch response that best meets the

learning needs of the individual.

Controlled Program Interrupt

When working with a student, especially a student who is highly
distracted, there might be an occasion when it is desirable to disable the
keyboard and switch so that either a switch or keyboard response is ignored.

The routine contained in lines 81 and 88 illustrate how this can be
incorporated in a program. After the keyboard is scanned by means of line 70,

program control is sent to line 81. If KY is equal to 155 (the Escape key
value), the program run is terminated. However, if KY is equal to 140 (or the
Control key + the L key), the screen is cleared and the program is set to hold
until the Control+L key combination is pressed a second time.

The only key that results in the controlled program interrupt is the

Control+L combination. This combination was selected because of the placement
of these two keys on the keyboard which would not likely be pressed in
combination (usually!) by a student banging away at keys at random. All other
keyboard keys are treated as a switch-type response.

10 REM SWITCH COLOR
20 REM
30 HOME
40 GR
50 IF PEEK(-16287) > 127 THEN 50
60 IF PEEK(-16287) > 127 THEN 90
70 KY = PEEK(-16384): IF KY > 127 THEN 81
81 IF KY = 155 THEN 150
82 GR: HOME
83 FOR D = 1 TO 1000: NEXT D
84 POKE-16368,0
85 KY = PEEK(-16384)
86 IF KY = 140 THEN 88
87 GOTO 85
88 POKE-16368,0
90 C = C+1: IF > 15 THEN C = 1
100 COLOR=C
110 FOR J = 1 TO 39
120 HLIN 1,39 AT J
130 NEXT J
140 GOTO 50
150 TEXT: HOME
160 POKE -16368,0
170 END

BASIC Switch Summary

The following is a summary of the switch access methods discussed in this

section. This list is by no means exhaustive and but it does provide a
description of a variety of techniques used to read single switch input:

47

1. Program holds at line 100 if switch is closed.
100 IF PEEK(-16287) > 127 THEN 100
110 PRINT "CONTINUE"

2. Program holds at line 100 if the switch is open.
100 IF PEEK(-16287) < 128 THEN 100
110 PRINT "CONTINUE"

3. Program holds at line 100 if the switch is open.
100 S = PEEK(-16287)
110 IF S < 128 THEN 100

4. If switch is engaged, S is set to 1.
100 S = PEEK(-16287) > 127
110 PRINT PEEK(-16287)
120 IF S = 0 GOTO 100

5. Switch must first be open before a switch response can be made to
send program control to line 130.
100 IF PEEK(-16287) > 127 THEN 100
110 IF PEEK(-16287) > 127 THEN 130
120 GOTO 110
130 PRINT "CONTINUE"

6. Switch must be opened before the screen event which follows a
switch response is initiated.
100 IF PEEK(-16287) > 127 THEN 130
120 GOTO 100
130 IF PEEK(-16287) > 127 THEN 130
140 PRINT "CONTINUE"

7. A switch response sends control to line 120.
100 IF PEEK(-16287) > 127 THEN 120
110 GOTO 100
120 PRINT "CONTINUE"

8. Either the open- or closed-Apple switch sends control to line 120.

100 IF PEEK(-16287) > 127 THEN 120
105 IF PEEK(-16286) > 127 THEN 120
110 GOTO 100
120 PRINT "CONTINUE"

9. A variation of the above routine.
100 IF PEEK(-16287) > 127 OR PEEK(-16286) > 127 THEN 120

110 GOTO 100
120 PRINT "CONTINUE"

10. Either a switch or keyboard response sends control to line 120.
100 IF PEEK(-16287) > 127 OR PEEK(-16384) > 127 THEN 120

110 GOTO 100
120 PRINT "CONTINUE"

11. Either the open- or closed-Apple key or the joystick (moving the
stick to the left) sends control to line 120.
100 IF PEEK(-16287) > 127 THEN 120
105 IF PEEK(-16286) > 127 THEN 120
106 IF PDL(0) < 75 THEN 120
110 GOTO 100
120 PRINT "CONTINUE"

12. A switch response sends control to line 120, while an Esc response

48

bypasses the single switch routine beginning in line 120.
100 IF PEEK(-16287) > 127 THEN 120
105 IF PEEK(-16384) = 155 THEN 130
110 GOTO 100
120 PRINT "CONTINUE"
130 POKE-16368,0

13. A variation of the above routine by using variable KY to store
keyboard responses.
100 IF PEEK(-16287) > 127 THEN 120
105 KY = PEEK(-16384): IF KY = 155 THEN 130
110 GOTO 100
120 PRINT "CONTINUE"
130 POKE -16368,0

14. Variable SW is usec to indicate input from register -16287.
100 SW = -16287
101 IF PEEK(SW) > 127 THEN 120

15. Alternative switch input (each switch must be engag.2d in
alternating order to provide switch input).
100 IF SW = -16287 THEN SW = -16286: GOTO 105
101 SW = -16287
105 IF PEEK(- 16384) = 155 THEN 130
106 IF PEEK(SW) > 127 THEN 120
107 GOTO 105
120 PRINT "SWITCH = "SW
125 GOTO 100
130 POKE-16368,0

16. Switch and keyboard responses are first stored in variable form
before program control is determined.
100 S1 = PEEK(-16287)
101 S2 = PEEK(-16286)
102 S3 = PEEK(-16384)
110 IF Si > 127 OR S2 > 127 OR S3 > 127 THEN 130
120 GOTO 100
130 PRINT "CONTINUE"

17. The switch must be engaged while in the loop otherwise the loop
begins anew.
100 FOR D = 1 TO 100
110 IF PEEK(-16287) > 127 THEN 150
120 NEXT D
130 PRINT "NEW LOOP"
140 GOTO 100
150 PRINT "CONTINUE"

18. Variation of the above but using two switches.
100 FOR D = 1 TO 100
110 IF PEEK(-16287) > 127 THEN 150
115 IF PEEK(-16286) > 127 THEN 150
120 NEXT D
130 PRINT "NEW LOOP"
140 GOTO 100
150 PRINT "CONTINUE"

19. Variation of the above but an Esc response ends the program while

in the loop.
100 FOR D = 1 TO 100
110 IF PEEK(-16287) > 127 THEN 150
115 KY = PEEK(-16384): IF KY = 155 THEN 160

49

120 NEXT D
130 PRINT "NEW LOOP"
140 GOTO 100
150 PRINT "CONTINUE"
160 END

20. A loop enclosed switch response but an actual counter is used
instead of a FOR/NEXT loop.
100 IF PEEK(-16287) > 127 THEN 170
110 NC = NC+1
120 IF NC = 100 THEN 140
130 GOTO 100
140 PRINT "NEW LOOP"
150 NC = 0
160 GOTO 100
170 PRINT "CONTINUE"

21. The switch sensing statement is enclosed in a loop to provide
information as to the duration of the switch response. The
response interval in this returns a value between 0 and 250.
10 FOR D = 1 TO 250
20 IF PEEK(-16287) > 127 THEN RI = RI+1
30 NEXT D
40 PRINT "RESPONSE INTERVAL = "RI

22. The switch response is read as a subroutine (lines 1000 and 1010)
in which program control remains in the subroutine until the
switch is engaged.
100 GOSUB 1000
110 PRINT "CONTINUE"
120 END
1000 IF PEEK(-16287) < 128 THEN 1000
1010 RETURN

23. Variation of the above routine.
100 GOSUB 1000
110 PRINT "CONTINUE"
120 END
1000 IF PEEK(-16287) > 127 THEN 1020
1010 GOTO 1000
1020 RETURN

24. The program ends when variable SW has been set to 1 by engaging
the switch while in the loop in the subroutine.
100 SW = 0
110 GOSUB 1000
120 IF SW = 1 THEN 140
130 END
140 PRINT "CONTINUE"
150 GOTO 100
1000 FOR D = 1 TO 100
1010 X = PEEK(-16287)
1020 IF X > 127 THEN 1050
1030 NEXT D
1040 GOTO 1060
1050 SW = 1
1060 RETURN

50

Error Detection Techniques

Most errors can be detected during a test run. Indeed, always test run
a program before actually using the program in earnest. When the program is
run, simple errors such as syntax should be corrected immediately following
each error prompt. How many times should a program be run and tested? The
answer is simple: until there are no more errors!

If an error occurs that is not easily detected, one of the following
techniques might be useful. The following TEST program listed below is used
to illustrate what might be considered more advanced debugging techniques.

Variable Checks

An old standard in debugging is to stop the execution of a program at

various points to inspect program variables. When the TEST program is run,
switch input is used to count from 1 to N (or when the Esc key is pressed).
Run and test the program to make sure that it is working.

10
20
30

REM TEST
REM
HOME

40 X = X+1
50 VTAB 10: HTAB 18
60 PRINT X
70 IF PEEK(-16287) > 127 THEN 70
80 IF PEEK(-16384) = 155 THEN 120
90 SW = PEEK(-16287)
100 IF SW > 127 THEN 30
110 GOTO 80
120 POKE -16368,0
130 END

After the initial test run, enter the following statement:

95 STOP

Now when the program is run, the number 1 appears center screen but the
program stops with the following message:

BREAK IN 95

List the program and then display the contents of the X variable and the SW
variable by:

?X, SW
1 32

The values displayed on screen indicate that 1 is in variable X and 32 is in

variable SW. Knowing the contents of a variable is often useful when
attempting to discern why a program is not doing what it should be doing. For

example, if a Y had been ini-dvertently entered in line 60 (e.g., PRINT Y), the

value displayed on screen would be a 0, but the value of X would reveal a
value of 1. In this situation, checking X would indicate that either X was

not incremented or displayed as expected.

If STOP's are used within a program when debugging, be sure to delete
these statements when the program is act ally used. On more than one occasion
I have used a single switch program with a student only to have the program
interrupted because of a STOP inserted during a debugging process.

51

ONERR GOTO Traps

Another programming technique that can be used to detect errors is to
incorporate ONERR traps. The ONERR GOTO XXX statement indicates that when an
error occurs, the program goes to the line specified. To illustrate how this
works, delete the STOP in line 95 (if this has not already been done), and
enter the following:

10 REM TEST-2
20 REM
25 ONERR GOTO 112
112 VTAB 12
113 PRINT "ERROR = "PEEK(222)
114 PRINT "LINE # = "PEEK(218) + PEEK(219)*256
115 IF PEEK(-16287) > 127 THEN 115
116 POKE 216,0
117 CLEAR
118 IF PEEK(-16287) > 127 THEN 25
119 GOTO 118

Line 25 stipulates that if an error occurs, program execution is

transferred to line 112. The number of the error that occurs is contained in
register 222. The error number is displayed and the line number where the

error occurred (lines 113 and 114). After the switch is released, the ONERR
function is discontinued and all variables cleared before the program begins

anew in line 25.

To see how the error trap works, add this line:

50 VTAB 10+X*3: HTAB 18

Activate the switch several times and the following should appear:

ERROR = 53
LINE # = 50

Examples of ONERR statement usage ca also be found in the

CATALOG/UTILITY and DISK MENU programs described in the next section.
Although the ONERR is extremely useful to trap errors, deactivating this
function when debugging or test running a program is sometimes necessary in

order to detect errors. In other words, a syntax error is better than having
this type of error suppressed and the program branching to a specific program
location each time an error occurs.

The POKE 216,0 in line 116 above resets the program so that normal error
messages are generated. If this were not done, an error anywhere in the
program would always send control back to the line designated after the ONERR

GOTO statement.

The following is a list of ONERR code values and corresponding errors:

Code Error

0 NEXT without FOR
16 Syntax error
22 RETURN without GOSUB
42 Out of DATA error
53 Illegal quantity error
77 Out of memory error
107 Bad subscript error
163 Variable type mismatch

52

TRACE

The TRACE command can be used to help locate the source of an error by
printing the line number of the program as each line is executed.

Clear memory with NEW and then enter the following three statements.
Assume that this is a portion of a program and line 250 should direct control
to line 300 and not back to line 250.

250 IF PEEK(-16287) > 127 THEN 250
260 GOTO 250
300 END

When this program is run, nothing happens because the program is "hung-up" at
line 250. This problem is very visible here, but in an extremely long program
this type of error might not be so easily detected.

Of course, for the above type of problem, the difficulty involves a
logical error rather than a BASIC programming error. In other words, the
program is doing exactly what it was programmed to do.

To exit the program, use Control+C. Next, enter TRACE and press RETURN
and then re-run the program:

TRACE
RUN

When the program is run with the TRACE in operation, the screen is filled with

the program line numbers:

#250 #250 #250 #250 #250 #250 #250 #250

As shown, only line number #250 appears because when the switch is engaged,
control is continuously directed back to line 250.

Use Control+C to interrupt the program, change line 250 so that control
is sent to line 300 and then run the program again. Now when the switch is
engaged line #300 should be the last line number to appear in the TRACE.

#250 #260 #250 #260 #250 #260...#250 #300

To turn off TRACE, enter NOTRACE and press RETURN:

NOTRACE

The TRACE command can be very useful when locking for hard to detect
bugs, but if this feature is used while accessing a disk file DOS becomes

deactivated. This problem, for the most part, can be solved by adding
CHR$(13) which, as mentioned previously, is the CHR$ equivalent to the RETURN
key to the DOS D$ variable. Enter the following to see how TRACE works in
conjunction with a DOS command:

NEW
10 D$ = CHR$(13) + CHR$(4)
20 PRINT D$; "CATALOG"
TRACE
RUN

Error Proofing

In addition to the ONERR command described above, certain programming

53

precautions can be taken to eliminate possible errors. For example, assume
that an INPUT statement is used to specify scan speed:

10 INPUT "SCAN SPEED (1=FAST TO 9=SLOW): ";SP

If a value less than 1 or greater than 9 is entered, the value of SP can be
set to designated minimum or maximum limits:

20 IF SP < 1 THEN SP = 1
30 IF SP > 10 THEN SP = 9

When the above line is executed and a letter key pressed, the following prompt
appears:

?REENTER

This occurs because an alphabetic character cannot be entered as an arithmetic
value. The possibility of this error occurring can be avoided by entering a
string value and then changing the string value to an arithmetic value as
follows:

11 INPUT "SCAN SPEED (1=FAST TO 9 =SLOW): ";SP$
12 SP = VAL(SP$)

Now, if an alphabetic character is entered, the string variable is converted
to an arithmetic variable. If the string is not a number value, SP is set to
0.

Utility Programs

Input Check

Knowing the whereabouts of the different switch locations provides an
opportunity to verify that switch input is being received by the computer.
Run the below program and the screen displays exactly what is being received
when a switch or joystick is engaged, or when a keyboard key is pressed. If

a switch is connected to the game port, the display shows a value greater than
127 then the switch is engaged. If nothing happens, check the switch and S-
pin connection. If a switch is not available, press the open Apple key and
the SWITCH #1 line displays a value of 160.

Most single switch devices are connected via the nine-pin game port
located on the back of the Apple (or the 16 pin input device located on the
inside of the II+ and The following shows the paddle and switch
locations of the various pins. To connect a switch device using PEEK(-16287),
one wire is connected to the +5 volt pin (42) and a second wire to pin number
#7. The following illustrates the pin locations as viewed from the back of
a nine-pin male plug. When the single switch device is engaged, contact is
made between pins #2 and #7 and the value in register PEEK(-16287) is set to

a value of 128 or greater.

PDL(0) PDL(2) GROUND +5 VOLT PEEK(-16286)
5 4 3 2 1

0

9 8 7 6

PDL(3) PDL(1) PEEK(-16287) PEEK(-16285)

54

The above nine-pin specifications can also be used to build a switch.
For example, by soldering the ends c.,f two different 24 gauge 2 conductor audio
cable wires to pins 2 and 7, and then soldering the other ends of these wires
to the corresponding switch terminals, a switch is easily constructed so that
when engaged, a value greater than 127 is registered in memory location -16287
(see Appendix C for IBM PC pin specifications):.

Switch devices such as mercury switches are relatively inexpensive and
easily built. In addition, a variety of plate and tread switches can also be
constructed. In the case of tread switches, I have built several using a
switch called a Treadlite (#T-51-S) and sold by the Linemaster Switch
Corporation located Woodstock, Connecticut and distributed by dealers selling
electrical supplies. However, with this type of switch the spring must be
replaced with one requiring less tension.

Switch input is also available by means of the 16 pin internal game
connector. On the 16 pin connector, pin #1 is the +5 volt source and pin #2
corresponds to PEEK(-16287) or the open-Apple key.

The INPUT CHECK program can be used to check Touchwindow, joystick input,
and to determine whether a switch is connected via location PEEK(-16287) or
PEEK(-16286). Finally, use the program to make sure that each keyboard key
is working properly. Each time a key is pressed, the corresponding keyboard
character (either lower- or uppercase) is shown at the top of the screen.
The keyboard code or ASCII value corresponding to each keyboard character is

also shown.

When the Esc key is pressed, the display simply shows that this key is

functioning. To really "escape" from this program, use the CONTROL+C
combination.

10 REM INPUT CHECK
20 REM
30 HOME
40 FOR K = 1 TO 40: L$ = L$ + "-": NEXT K
50 VTAB 3: HTAB 15
60 PRINT "INPUT CHECK"
70 E$ =
80 VTAB 13: PRINT L$
90 VTAB 10: HTAB 21
100 PRINT "VALUE IS < 255 WHEN"
110 HTAB 21
120 PRINT "JOYSTICK IS ENGAGED."
130 VTAB 8: PRINT L$
140 VTAB 18: PRINT L$
150 VTAB 15: HTAB 21
160 PRINT "VALUE IS > 127 WHEN"
170 HTAB 21
180 PRINT "SWITCH IS ENGAGED."
190 POKE -16368,0
200 KY = PEEK(-16384)
210 C$ = CHWKY)+E$
220 IF KY = 27 THEN C$ = "ESC"
230 IF KY < 27 THEN C$ = "C+" + CHR$(64 + KY)
240 IF KY = 8 THEN C$ = "<--"
250 IF KY = 13 THEN C$ = "RET"
260 IF KY = 21 THEN C$ = "-->"
270 VTAB 6: PRINT "KEY = "C$
280 VTAB 6: HTAB 12
290 PRINT "CODE = "KY"
300 P1 = PDL(0)
310 S1 = PEEK(-16287)

55

320
330

S2 =
P2 =

PEEK(-16286)
PDL(1)

340 VTAB 10
350 PRINT "PADDLE #1 = "P1;E$
360 PRINT "PADDLE #2 = "P2;E$
370 VTAB 15
380 PRINT "SWITCH #1 = "Sl;E$
390 PRINT "SWITCH #2 = "S2;E$
400 GOTO 190
410 END

Disk Access

When attempting to interrupt a program in order to list the program or
to display the catalog and the program re-boots each time Control+Reset is

pressed, the HELLO program probably contains the following statement which
makes Control+Reset the command to boot the program.

POKE 1012,0

In order to find out whether this is the case or not, exit the disk menu if

possible and load the HELLO program. If there is no way to exit the disk
menu, boot the system with a different disk, and then load the HELLO program
from the disk which re-boots when Control+Reset is pressed. List the program
and determine whether a line contains POKE 1012,0. Delete this line and then
re-save the HELLO program. Now, when Control+Reset is pressed, disk programs
can be interrupted.

Of course IL a simple method is wanted to prevent others from

interrupting a program using Control+Reset, insert POKE 1012,0 at the

beginning of the HELLO program.

5 POKE 1012,0

If POKE 1012,0 is used and there is a need to reset Control+Reset so that
this sequence operates in the usual manner, the following changes Control-
Reset back to its normal function:

POKE 1012,56

Catalog Utility Programs

Instead of immediately booting a disk and running a program, a catalog
utility can be installed as the greeting program so that the disk CATALOG is
displayed each time the program is booted. At the end of the catalog a
routine can be added that inputs a program name and then run the program
specified.

To install the HELLO UTILITY program enter. he program as shown, or load
HELLO-U from the program disk (use NEW to clear memory before loading this
program). After the program has been loaded, save the program using the
greeting program name:

LOAD HELLO-U
SAVE HELLO-U

10 REM HELLO UTILITY
20 REM
30 L$ = "SINGLE SWITCH BASIC PROGRAM"
40 L$ = LEFT(L$,38)

56

50 HOME: VTAB 2
60 PRINT L$
70 ONERR GOTO 90
80 GOTO 160
90 HOME: POKE 216,0
100 VTAB 7
110 PRINT "ERROR = "PEEK(222)
120 VTAB 15: HTAB 8:
130 PRINT "(PRESS RETURN TO CONTINUE)";
140 POKE -16368,0: GET KY$
150 GOTO 50
160 PRINT CHR$(4);"CATALOG"
170 HTAB 8: PRINT "EXIT"
180 VP = PEEK(37)
190 IF VP < 20 THEN 220
200 FOR L = 1 TO 4: PRINT: NEXT L
210 VP = 19
220 VTAB VP+4: HTAB 3
230 PRINT "(ENTER PROGRAM NAME AND PRESS RETURN)"
240 VTAB VP+1
250 PRINT: PRINT SPC(6)">";
260 POKE -16368,0
270 INPUT "";PN$
280 IF PN$ < > "EXIT" THEN 300
290 POKE -16368,0: VTAB 24: END
300 PRINT
310 PRINT CHR$(4);"RUN"PN$

An example of how to use the above utility program might be to include a
series of readiness programs on a single disk. Line 30 can be changed to
something like READINESS ASSESSMENT PROGRAMS, a new disk initialized with the

above utility as the greeting program, and then programs saved that deal with
single switch readiness skills and various program modifications.

Greeting Program Switch Control

There are several techniques that can be used to read switch control
values when the Apple is first booted and then to use these control values

when a single switch application is run. As an example, the scan speed could
be read by means of the greeting program and all subsequent programs (or

specified programs) would use these values.

The following modifications to the HELLO UTILITY program (or to whatever
greeting program is being used on a disk) inputs a scan speed value and name,

store both on disk in a file called SWITCH CONTROL. Other programs on the
disk can retrieve the information in the SWITCH CONTROL file, and then use

these values within the application.

21 HOME: VTAB 5
22 INPUT "NAME: ";N$
23 PRINT
24 SCAN SPEED (1 TO 9): ";SP
25 D$ = CHR$(4)
26 PRINT D$;"OPEN SWITCH CONTROL"
27 PRINT D$;"WRITE SWITCH CONTROL"
28 PRINT N$: PRINT SP
29 PRINT D$;"CLOSE SWITCH CONTROL"

The information in the SWITCH CONTROL file is retrieved by the following

routine which can be added to the beginning lines of the single switch
application:

57

21 D$ = CHR$(4)
22 PRINT D$; "OPEN SWITCH CONTROL"
23 PRTNT D$; "READ SWITCH CONTROL"
24 INPUT N$: INPUT SP
25 PRINT D$.; "CLOSE SWITCH CONTROL"

A similar technique is described in Chapter 8 in the section on

Creating/Modifying Database Files in which a reading program imports a scan

speed value from a program entitled DOS CONTROL.

If a single value is specified in the greeting program, a quick-and-easy

technique can be used to store the value in an unused memory location, and

then retrieve this value after a single switch application has been run. For

example, the scan speed could be specified in the greeting program, stored in

memory location 950, and then retrieved when an application on the disk is

run.

21 HOME: VTAB 5
22 INPUT "SCAN SPEED (1 TO 9): "SP

23 POKE 950,SP

The scan speed value stored in memory location 950 is easily recalled

within a program by

21 SP = PEEK(950)

Disk Menu

If the DISK MENU program listed below is used, up to 14 disk programs can

be displayed when the program is run. To use this program, first enter the

program and then modify the DATA statement in line 410 to include whatever

programs that are listed when the disk is first booted. If a program name not

on the disk is specified, an ONERR statement is used to send control to line

350 where the error number is printed. If no error is encountered, the

program specified is run from the disk.

The title of the disk can be reset by changing variable N$ in line 40.

In line 160, the program name is automatically centered and then displayed.

The following is an example of the type of screen format that appears when the

disk is booted:

SINGLE SWITCH PROGRAMS

SELECTION:

1 = SWITCH
2 = READ
3 = SPELLTALK

(E=EXIT TO BASIC)

(Make Selection and Press RETURN)

To run one of the programs shown in the menu, all that needs to be done

is to enter the number that corresponds to the program name and then press

RETURN.. The program automatically assigns a number to each of the program

names listed in the DATA statement in line 410.

10 REM DISK MENU
20 REM
30 DIM NP$(14)
40 N$ = "SINGLE SWITCH PROGRAMS"

58

50 FOR K = 1 TO 40: H$ = H$ + "-": NEXT K
60 ONERR GOTO 110
70 FOR K = 1 TO 14
80 READ NP$(K)
90 VP = VP+1
100 NEXT K
110 POKE 216,0
120 HOME
130 VTAB 3: PRINT H$
140 VTAB 21: PRINT H$
150 INVERSE: VTAB 2
160 HTAB 21-LEN(N$)/2
170 PRINT N$
180 VTAB 5
190 NORMAL
200 FOR K = 1 TO VP
210 H = 13: IF K > 9 THEN H = 12
220 HTAB H: PRINT K " = "NP$(K)
230 NEXT K
240 VTAB 24: HTAB 5: PRINT "(Make a Selection and Press

RETURN)";
250 VTAB VP+6: HTAB 1: PRINT "SELECTION: ";
260 VTAB VP+6: HTAB 17: PRINT "(E=EXIT TO BASIC)"
270 VTAB VP+6: HTAB 12
280 IF VP < 10 THEN PRINT " ";

290 POKE -16368,0: INPUT "";C$
300 NC = VAL(C$)
310 IF C$ = "E" OR C$ = "e" THEN END
320 IF NC < 1 OR NC > VP THEN 120
330 ONERR GOTO 350
340 GOTO 400
350 HOME: VTAB 10: PRINT "DISK ERROR: "PEEK(222)
360 POKE 216,0
370 VTAB 15: HTAB 8: PRINT "(PRESS RETURN TO CONTINUE)";
380 POKE -16368,0: GET R$
390 GOTO 120
400 PRINT CHR$(4);"RUN "NP$(NC)
410 DATA SWITCH,COLOR,READ,MATH,SPELLTALK

The DISK MENU program can be used by first loading the program into

memory, inserting a blank disk into drive #1, and then initializing the disk
using the DISK/MENU program as the HELLO or greeting program. When this is
done, and when the disk just initialized is booted, the menu appears.

The DISK MENU can be used to create a variety of "turnkey" applications
(or systems that simply require the user to "turn the key," or i i this case,

to "turn the computer on" to get started). Thus, a separate disk might be
used for readiness programs, another for scan applications, and another for

academic tasks.

HELLO/DISK MENU Applications

The DISK MENU program can be saved as the HELLO program so that each time

the disk is booted, the disk menu appears. For an already initialized disk,
enter the DISK MENU Program and then save as the HELLO program:

SAVE HELLO (where DISK MENU is the program in memory)

or initialize a blank disk with DISK MENU in memory:

INIT HELLO

59

GO

To move from an application program back to the DISK MENU, the use the
following in place of the END statement or whatever procedure is used to exit
the application:

XXX PRINT
XXX PRINT CHR$(4);"RUN DISK MENU"

If the greeting program is also used to load binary file applications
such as a speech synthesizer (see Chapter 4) or a character font set (see
Chapter 6), the HELLO program might load and/or run the binary files, and then
run the DISK MENU program. Now when the application program is exited and the
DISK MENU program is re-run, the binary program is not re-loaded into memory.
In most situations, loading or running an Applesoft program will not destroy
a binary program in memory.

10 REM HELLO
20 REM
30 HOME
40 D$ = CHR$(4)
50 PRINT D$;"BRUN TEXTALKER"
60 PRINT D$;"BLOAD LASCII"
70 PRINT D$;"RUN DISK MENU"

System Master Utilities

The DOS 3.3 System Master disk contains several useful utility programs.
In addition to the COPYA program already discussed, this disk contains a
program called RENUMBER. Load this program into memory, the save the program
on the program disk using the name RENUM:

LOAD RENUMBER

SAVE RENUM

With the RENUM program saved on the program disk, you might want to begin
computer sessions which will involve BASIC programming by first running this

utility. After RENUM has been run and the RENUM instruction screen displayed,
press RETURN. The message RENUMBER IS INSTALLED AND READY should appear.

RUN RENUM

When RENUM is run, the line numbers within a program can be renumbered
so that all the lines are incremented by 10 by entering & and pressing RETURN.
This utility is useful for cleaning up a program after many modifications.
The size of the line number increments between program lines can also be
modified by using the RENUM utility. To set the first line number of a
program to 10, and to increment the program lines by 20, the following is
used:

&FIRST 10, INC 20

By just entering the symbol & and pressing RETURN, the first line of a program
is automatically set to 10 and all lines are incremented by 10.

The RENUM program is very useful for making some sense out program line

numbers that have been modified and inserted beyond recognition. This utility
is also very useful for creating space for additional line numbers. After
modifying a program by adding lines, and making sure that the program works,

enter & and you will have ample space for additional insertions.

For those wishing to combine programs, RENUM is an essential utility.

60

To combine two programs, enter the first program or routine and then enter &H
to hold the program in memory while a second BASIC program is loaded and run.
Modify the second program or routine so that the program lines are in concert
with the program on hold. You do not want to duplicate program lines. Next,

enter &M to merge the two programs. With a little practice the RENUM merge
and hold functions can be a real time saver.

One final RENUM note. If you use certain programs such as the TEXTALKER
for Echo applications, this will likely bomb the RENUM utility. Should this
happen, re-run RENUM or even re-start the system if necessary.

Another useful utility on the System Master disk is called FID and is run

by entering BRUN rather than just RUN:

BRUN FID

This program contains a menu of programs for copying files, determining how
much space is on a disk, and several other useful options

APPLE Memory

For those interested in the how the Apple's memory is related to BASIC,
the following section might be of some use. If not, skip this section and
your ability to use the applications described in the subsequent chapters will
not be hampered.

The Apple's memory is divided into Random Access Memory (RAM), Read-Only
Memory (ROM), and Input/Output Locations. For the single switch BASIC user,
the RAM portion of the Apple's memory is what is really important.

The following are BASIC instructions provide information concerning how
the Apple's memory is configured and the amount of programming memory that is

currently available. To determine the amount of free programming space
available use the FRE function:

PRINT FRE(0)
-32020

The above is especially useful for determining the amount of memory available

for very large BASIC programs. In the above example, the value returned by
FRE(0) is -32020. If the value returned is negative, use the following to
print the positive decimal equivalent of available memory:

PRINT 65536 + FRE(0)
33516

To determine the first memory location of an Applesoft program use the

following:

PRINT PEEK(103) + PEEK(104) * 256
2049

But why is it necessary to multiply one of the PEEKS's by 256? The

65,536 memory locations in the 6502 chip (which is the heart of the Apple) are

numbered from 0 to 65535. Each of these locations can store a single decimal
value, and this must be a number from 0 to 255. The value 255 (which seems
to appear frequently in BASIC programming) is equivalent to the binary value
11111111 or hexadecimal value of FF. Because each register or memory location
contains only one byte, and because one byte is equal to 8 bits (e.g., the
binary value 11111111 is comprised of 8 bits), the maximum value that can be

61

C 4

stored in a memory location is 255 or

128X1 + 64x1 + 32x1 + 16x1 + 8x1 + 4x1 + 2x1 + lx1 = 255

To keep track of a memory location or address having a value greater than
255, a second byte of memory is used. In determining the starting location
of an Applesoft program, PEEK(103) indicates the values 0 to 255, and
PEEK(104) the value in excess of 255 (or 256 to 65280) . Thus, the highest
memory location is 255 + 255 X 256 = 65535. When Applesoft is first booted,
PEEK(103) is set to 1 and PEEK(104) to 8 which signifies a starting memory
location of 1 + 8 X 256 = 2049. To determine the last memory location of an
Applesoft program use the following:

PRINT PEEK(175) + PEEK(176) * 256
2769

As can be seen, when the system is first booted, the beginning
programming location is 2049. If high-resolution graphics are not used, the
program and variables used can extend up to location 38400 which is called the

high memory location or HIMEM. The value of HIMEM indicates the highest
memory location available to an Applesoft program. The actual HIMEM value
depends on the amount of memory available and is found by

PRINT PEEK(115) + PEEK(116) * 256
38400

String arrays begin at HIMEM and extend downward. If a program contains a
large number of string statements (e.g., a series of sentences stored in an
array containing 50 strings (e.g., S$(1), S$(2)...S$(50)), the contents of
these string array variables would be stored at a point beginning with HIMEM,
and extend downward in terms of program entry.

If high-resolution graphics are used, and page 1 (i.e., the primary page
picture buffer) of high-resolution begins at location 8192, the program can
overlap into space dedicated to high-resolution graphics and problems can
occur. In other words, if a BASIC program extends into space used by high-
resolution graphics, the graphics can bomb the BASIC instructions in this

memory area. When page 1 high-resolution graphics are in use, the usable size

of an Applesoft BASIC program is:

8192 - 2049 = 6143

which is approximately 24 sectors of disk space. If a program is partially
destroyed when the HGR command is used, one remedy might be to use HGR2 or

page 2 (i.e., the secondary page picture buffer) which sets the high
resolution graphics to full screen (280 columns by 192 rows). Although HGR2

increases the amount of available programming space, there are several
additional techniques that can be used to accommodate large programs and thus
avoid complications which might arise from using secondary page graphics.

Simple variables used by a BASIC program begin at a point called LOMEM
which, unless otherwise set, immediately follow the BASIC program in memory.

Depending upon the types of variables used, programming space can be saved by
setting LOMEM to either 16384 (if only page 1 high-resolution graphics are
used) or 24576 (if both page 1 and page 2 high-resolution graphics are used):

LOMEM: 16384
or
LOMEM: 24576

The current value of LOMEM is found by the following:

62

LOMEH: 16384
PRINT PEEK(105) + PEEK(106) * 256
16384

A second method for accommodating very long BASIC programs, and one which
provides a considerable amount of extra memory if page 1 high-resolution
graphics are being used, is to change the starting point of the BASIC program
in memory. The following program resets the beginning Applesoft program
starting location from the usual starting address of 2049 when the system is
first booted to the address immediately after the last location of page 1 of
high-resolution graphics or 16384:

10 A = 16384
20 POKE A 1,0
30 POKE 103, A - INT(A/256) * 256
40 POKE 104, INT (A/256)

When the above program is run (be sure to save it on disk first), Applesoft
is reset to begin at location 16384 so that a fairly large program can be run
without interfering with page 1 of high-resolution graphics. If both page 1
and page 2 high-resolution graphics are being used, set the starting address
to 24576.

10 A = 24576

If the beginning program address is set to 16384, the size of a program
and all variables used can be

38400 - 16384 = 22016

which is a substantial amount of memory that can be dedicated to a program
when hi-res graphics are in use. A variation of this programming technique
is used in the MEMORY MOVE described in the Chapter 3.

Hexadecimal Numbers

Every once in a while you will come across a memory location that is a
combination of letters and numbers. These are called hexadecimal numbers or
just "hex" numbers and will look something like the following: $D000, $C061,

$FF, $FFFF. The hexadecimal numbering system consists of

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F. Instead of 10, 11, 12, 13, 14, and 15, hex
values are expressed as A, B, C, D, E and F. When used to indicate computer
memory, hex values are designated as such by the dollar sign ($) symbol.

Decimal Hex
0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 A
11
12
13
14

63

c

15

For combinations of hex values, the base 16 number system is used to
translate the values to decimal equivalents. Thus, $FFFF is equal to (15 X
4096) + (15 X 256) + (15 X 16) + 15 or 65535; the value $C061 is equal to
49249 which is the equivalent of -16287. Although you may never use a hex
value, there might be an occasion when it is useful knowing what these values
mean and even what memory location is being referenced.

Statement Finder

The following section deals with a technical aspect of BASIC and can be
avoided with no harm done to either your knowledge for or appreciation of
single switch software design, use, or development. In other words, unless
you have a compelling interest in the really basic aspects of BASIC, skip this
section. However, if you do have an interest in advanced single switch BASIC
applications, the Statement Finder routine described below might be of some
interest.

As was said before, the Apple 6502 chip or "mic oprocessor" has a total

of 65,536 memory locations. Each memory location is identified by a number
called an address, and can hold one byte which is used to represent characters

or instructions. Clear memory and enter and run this one line program:

10 PRINT 4+6
10

Address Value Meaning

2051 10 Line number
2052 0

2053 86 PRINT
2054 52 4

2055 200 +

2056 54 6

When this one line program is run, the contents of each memory location
is executed and the sum of 4 + 6 is printed. Notice that the code for PRINT
is the numeric value 186. When PRINT is used in a program, the instruction
is stored as the decimal 186 in one of the Apple's address registers (address
2053 in the above program).

The all-important PEEK(-16287) is stored in Apple registers as the
decimal values 226,40,49,54,50,56,55,41 (where the decimal value 226 is the
decimal equivalent of PEEK).

The decimal equivalents of BASIC statements stored in resisters can be
useful when working with fairly long programs and there is a need to identify
all the PEEK's within the program or some other BASIC statement. The
following is used by adding the seven line routine to the beginning of a BASIC

program. Line 1 contains the decimal equivalent of the PDL instruction. When
the program is run with the STATEMENT FINDER routine added, every line number

containing a PDL instruction is displayed.

1 X = 226
2 S = PEEK(103) + PEEK(104) * 256
3 E = PEEK(175) + PEEK(176) * 256
4 FOR J = S+144 TO E: IF PEEK(J) > 0 THEN 7
5 L = PEEK(J+3) + PEEK(J+4) * 256
6 J = J+4
7 IF PEEK(J) = X THEN PRINT L" ";

64

8 NEXT J: END

The above routine can be used find whatever statement is specified in
line 1. For example, the decimal equivalent of the PDL command is 216. The
STATEMENT FINDER routine was added to a fairly long single switch program
containing over 500 lines with many lines having compacted instructions.

Instead of attempting to find every PDL by listing the program (and it's
easy to overlook commands when reviewing listings), the Statement Finder
routine was added to the program by first running RENUM, then the Statement
Finder Program, and then using &H to hold the routine in memory. The single
switch application was then loaded and the two programs merged. When run, the
program quickly identified the line numbers containing PDL instructions.

1640 2130 2240 2460 3660

The purpose of identifying the PDL instruction was to change the type of

joystick movement sensed from PDL(0) to PDL(1). With the help of the
Statement Finder routine, this is accomplished without a great deal of
difficulty.

Another application might be a program that has a number of STOP
statements buried in the code as a result of various debugging efforts.
Setting X in line 1 to 179 and then running the program will quickly reveal

all the STOP statements contained in the program. REM statements could be
identified by setting X to 178, POKE's by setting X to 185, and PEEK's by

setting X to 226.

The Statement Finder routine is primarily deigned for use with longer
programs, but it can be a useful aide for identifying statements that need to
be modified (e.g., changing PEEK's from -16286 to -16287) and to identify
program bugs (e.g., identifying all the loops within a program beginning with
the FOR statement). The Applesoft BASIC programming reference manual contains
a complete list of statement codes (p. 121).

65

Chapter 3

Low-resolution Graphics

The Apple computer has two primary graphics modes: low-resolution and

high-resolution graphics. Low-resolution graphics can display up to 1,024
screen blocks using a screen comprised of up to 40 columns and 48 rows. High-
resolution can display up to 53,760 dots using a screen comprised of up to 280

columns and 192 rows.

The advantage of low-resolution graphics in comparison to high-resolution
graphics is that it uses much less memory and disk space to store a low-
resolution graphics image; the advantage of high-resolution graphics is in the

name: the graphics image can be much clearer because of the greater
"resolution" or the number of dots used to make the image.

The following is a list and several examples of the primary of low-
resolution BASIC instructions:

GR Set to low-resolution graphics mode.
COLOR= 15 Set the color to white.
PLOT 0,0 Display a dot in column 0 and row 0.
PLOT 1,20 Display a dot in column 1 and row 20.
PLOT 5,16 Display a dot in column 5 and row 16.
HLIN 15,25 AT 20 Draw a horizontal line from column 15 to 20 at row 20.

VLIN 5,10 AT 30 Draw a vertical line from row 5 to row 10 in column
30

TEXT Return to text 'Dr regular non-graphics screen mode.

The LOWRES SAMPLE program illu-rates the use of the COLOR and PLOT
instructions. When this program is run, a simple shape appears on the screen.

Each time the switch is engaged, the color of the low-resolution is changed.
By adding, deleting or modifying shape statements an infinite number of low-
resolution screen images can be created.

10 REM LOWRES SAMPLE
20 REM
30 GR
40 IF PEEK(-16287) > 127 THEN 40
50 IF PEEK(-16287) > 127 THEN 80

60 IF PEEK(-16384) = 155 THEN 190
70 GOTO 50
80 C = C+1: IF C > 15 THEN C = 1
90 COLOR=C
100 PLOT 20,20
110 PLOT 19,21
120 PLOT 21,21
130 PLOT 18,22
140 PLOT 22,22
150 PLOT 17,23
160 PLOT 23.23
170 HLIN 0,39 AT 25
180 GOTO 40
190 TEXT
200 POKE -16368,0
210 END

The program begins by setting the graphics mode in line 30, senses switch

66

input in lines 40-70, and then displays the low-resolution image in lines 80-
170. The color is set in line 80 using variable C, beginning with color code
#1, incrementing this value each time the switch is engaged, and then
resetting this va,l.ue to 1 if the color value in C exceeds 15. The color of
the road is easily changed by adding line 165:

165 COLOR=15

The following is a list of the various low-resolution colors available.
Although low-resolution graphics does not have the clarity of high-resolution
graphics, there are twice as many colors. Experiment with the various low-
resolution colors by changing line 90 or by adding additional COLOR
statements.

Code Color Code Color

0 black 8 brown
1 magenta 9 orange
2 dark blue 10 grey 2

3 purple 11 pink
4 dark green 12 green
5 grey 13 yellow
6 medium blue 14 aqua
7 light blue 15 white

When the program is run notice that the word RUN remains at the bottom

of the screen display. This is because the first 20 rows of the screen are
used for graphics and the last four for text. The entire screen can be set
to low-resolution graphics by adding the following:

35 POKE -16302,0 (entire screen low-resolution graphics)

36 CALL -1998 (clears low-resolution screen to black)

Or the screen can be cleared at the beginning of the program by means of a
HOME statement:

25 HOME

To exit the program, the Esc key is used. Press the Esc key and then
enter LIST to list the program.

The LOWRES SAMPLE program can be modified by using the HLIN instruction
to create an image of a car. To modify the program, replace lines 100 to 160

with the following:

100 HLIN 19,22 AT 18
110 HLIN 19,22 AT 19
120 HLIN 15,25 AT 20
130 HLIN 15,25 AT 21
140 HLIN 15,25 AT 22
150 HLIN 15,25 AT 23
160 PLOT 17,24: PLOT 22,24

Each time this program is run, a low-resolution image of a car appears

when the switch is engaged. For each subsequent switch input, the car changes

color (as does the road on which the car is placed). When the Esc key is
pressed and the program run ended, the screen changes to inverted @ symbols
indicating that the screen has been changed from low-resolution graphics to

text mode. When the program is listed, the program code is displayed using

the full screen.

67

Sequential Graphics

By changing the lines used to check for a switch response to a

subroutine, as shown in the LOWRES-SG listing below, the program can be

modified to display low-resolution components in a sequential graphics

cause/effect format. When this is done, each switch response results in the

display of a different low-resolution component. In this program, the switch

subroutine is accessed by the GOSUB instruction. When the switch is engaged,
the newly created subroutine (lines 40 to 80) senses the input, control is
returned (as indicated by the RETURN in line 80) to the statement immediately

following the GOSUB statement.

10
20
25
30
35

REM LOWRES-SG
REM
HOME
GR
GOTO 90

40 IF PEEK(-16287) > 127 THEN 40

50 IF PEEK(-16287) > 127 THEN 80

60 IF PEEK(-16384) = 155 THEN 180

70 GOTO 50
80 RETURN
90 GOSUB 40: COLOR=3
100 HLIN 19,22 AT 18
110 HLIN 19,22 AT 19
115 GOSUB 40: COLOR=7
120 HLIN 15,25 AT 20
130 HLIN 15,25 AT 21
140 HLIN 15,25 AT 22
150 HLIN 15,25 AT 23
155 GOSUB 40: COLOR=13
160 PLOT 17,24: PLOT 22,24
165 GOSUB 40: COLOR=15
170 HLIN 0,39 AT 25
171 GOSUB 40: COLOR=8
172 VLIN 7,24 AT 32
175 GOSUB 40: COLOR=12
176 PLOT 28,4: PLOT 30,2
177 PLOT 32,5: PLOT 34,7
178 PLOT 34,3
180 POKE -16368,0
190 END

Each time the subroutine is called (i.e., a switch response is entered),

a component of the image is displayed in the color specified. The "tree" is

displayed via the subroutine beginning in line 175.

After running the program with the above change, list the program. As

can be seen, the program is listed but only the last four lines of the screen

are used. The reason this happens is that a TEXT statement was not inserted

so that the low-resolution image would remain on the screen after the program

ended. In order to list the entire program, enter TEXT and press RETURN:

TEXT

The LOWRES-SG program displays each low-resolution screen component and

then the program ends. The program routines can be placed in a continuous

loop by adding line 179:

179 GOSUB 40: GR: GOTO 90

With this modification in place the program continually displays the low-

68

resolution components in sequence until the Esc key is pressed.

Single Switch Readiness

Assessing Readiness

When working with young children or persons unfamiliar with computers and
single switch devices, cause-effect programs provide an excellent opportunity
to develop important readiness skills for more sophisticated learning and
academic tasks. However, the term "cause-effect" can be somewhat misleading.
For cause-effect (e.g., LOWRES SAMPLE) programs already described, an

assumption is made that the individual realizes that a switch response
"causes" a screen activity (e.g., the screen changing color, appearance of a

face, sound, etc.). However, there is no way of knowing how the individual
actually conceptualizes the relationship between the switch response and the

screen activity.

When using cause-effect software, it is important encourage distinct and
purposeful responses by using ample verbal cues and verbal reinforcement. In

addition, it is also important to increase the complexity of the switch task
when the student has developed sufficient readiness skills as indicated by the
ability to exhibit distinct and purposeful responses.

The readiness scan program shown below illustrates one method for
bridging the gap between cause-effect and scan software. This program is
designed to encourage purposeful behavior by requiring the child to wait until

the "nose" prompt appears. A cursor moves from left to right until the cursor
is center screen and a "nose" prompt appears. If the switch is engaged before
the prompt appears, no feedback is given. If engaged while the prompt is
displayed, a face appears.

When using this program, verbal prompts such as "wait, or "don't press
the switch yet" as the cursor moves from left to right should be used often.
When the nose appears, indicate that a switch response should be made by "Now,

press the switch." When the task is completed without the aid of verbal
prompts, a reasonable assumption can be made that the individual has

conceptualized the existence of a relationship between engaging the switch and
the screen activity (i.e., the appearance of Nilt's face).

10
20
30
40

REM NILT'S NOSE
REM
HOME
GR

50 COLOR = 3: PLOT 4,15
60 FOR K = 4 TO 19 STEP 3
70 COLOR=3
80 PLOT K,15
90 FOR L = 1 TO 100
100 IF PEEK(-16287) > 127 THEN 380
110 IF PEEK(-16384) = 155 THEN 400
120 NEXT L
130 COLOR=0: PLOT K,15
140 NEXT K: COLOR=3
150 PLOT 20,15
160 PLOT 19,16: PLOT 21,16
170 FOR D = 1 TO 100
180 IF PEEK(-16287) > 127 THEN 210
190 NEXT D
200 GOTO 380
210 HLIN 15,25 AT 5

69

220 PLOT 14,6: PLOT 13,7
230 PLOT 26,6: PLOT 27,7
240 VLIN 8,24 AT 12
250 VLIN 8,24 AT 28
260 PLOT 13,25: PLOT 14,26
270 PLOT 15,27: PLOT 16,28
280 PLOT 27,25: PLOT 26,26
290 PLOT 25,27: PLOT 24,28
300 HLIN 17,23 AT 29
310 COLOR=12
320 PLOT 17,10: PLOT 18,10
330 PLOT 17,11: PLOT 18,11
340 PLOT 22,10: PLOT 23,10
350 PLOT 22,11: PLOT 23,11
360 COLOR=9
370 HLIN 17,23 AT 22
380 FOR L = 1 TO 1500: NEXT L
390 GOTO 40
400 TEXT: HOME
410 POKE -16368,0
420 END

By adding line 381, NILT's face remains on the screen as long as the
switch is engaged:

381 IF PEEK(-16287) > 127 THEN 381

The above program certainly lacks pizazz, but this can be remedied by

adding a sound subroutine. First, enter the machine language program to
generate the sound. This is accomplished adding a sound routine in lines 2,
4 and 6. A detailed discussion of sound and speech enhancements is provided

in Chapter 4.

2 FOR K = 1 TO 21: READ A
4 POKE 801+K,A: NEXT K
6 DATA 174,32,3,173,48,192,136,208,5,206,

33,3,240,6,202,208,245,76,34,3,96

Now add lines 45, 46 and 47 to give the scan sound as it moves from left

to right:

45 POKE 800,200-K*4
46 POKE 801,100
47 CALL 802

Next, add the GOSUB to play the musical tune after a "correct" response:

355 GOSUB 5000

Last, add the routine that plays the different notes:

5000 POKE 800,101
5010 POKE 801,48
5020 CALL 802
5030 POKE 800,76
5040 POKE 801,48
5050 CALL 802
5060 POKE 800,60
5070 POKE 801,48
5080 CALL 802
5090 POKE 800,52
5100 POKE 801,96

70

5110 CALL 802
5120 POKE 800,60
5130 POKE 801.48
5140 CALL 802
5150 POKE 800,52
5160 POKE 801,255
5170 CALL 802
5180 RETURN

Refer to Chapter 4 for a detailed discussion concerning how to modify the

POKE's in the above subroutine to vary the sound/music production.

Measuring Latency

Latency is an important variable to consider when evaluating an
individual's ability to use a single switch device and when determining the
appropriate scan duration for each individual. To illustrate how latency can
be measured, the loop used to evaluate the switch can also be used to provide

latency data. In line 170, a loop comprised of 100 iterations is used to
evaluate a switch response. In other words, D is first set to 1 and PEEK(
16287) is evaluated, then D is set to 2 and PEEK(-16287) is evaluated again.

This is repeated until D has been set to 100. When the program task
concludes, the value of D provides information as to how soon the switch was
engaged following the appearance of Nilt's nose (i.e., the target stimulus).

In the following program additions, the variable N is used to keep track
of the number of number of items and D is the value in the loop that was
reached just prior to engaging the switch:

385 N = N+1
386 PRINT N" "D
387 FOR L = 1 TO 1500: NEXT L
388 HOME

Because variable D provides an index of the time available to respond to
the target prompt, the value of D can be reported as a percentage. Thus, if

D is 79, and the maximum size of the loop is 100, D can be printed as a
percentage of 100 or:

386 PRINT N" LATENCY = "INT(D/100*100+.5)

The .5 in the above statement is used to round off to the next highest
percentage.

If the loop size has been set previously, the statement in 386 can be

modified as follows:

35 6P = 150
170 FOR D = 1 TO SP
386 PRINT N" LATENCY = "INT(D/SP*100+.5)

The scan speed is set by variable SP in line 35; SP signifies the number

of scan iterations 'n line 170; and latency is then reported as a percentage

in line 386. Because the scan duration is fairly long in the above

modification, it might be useful to reduce the number of cursor scans that

appear prior to the appearance of the stimulus target.

Scan Tracking

The ability to generalize is critical in most educational tasks. If a

71

student is able to respond successfully using NILT'S NOSE, the following SCAN
TRACKING program can be used to provide a conceptually similar program but one
in which the format is slightly different. For this program, a cursor moves
from left to right. If the switch is activated when the cursor is within the
boundaries of the box displayed on the screen, sound and visual feedback is
given.

The number of trials presented for each run is determined by the value
of N set in line 40. The program is terminated after N items have been
presented or by pressing Esc.

10 REM SCAN TRACKING
20 REM
30 SP = 5
40 N = 10
50 FOR K = 1 TO 21
60 READ A
70 POKE 801+K,A
80 NEXT X
90 DATA 174,32,3,173,48,192,136,208,5,206,

33,3,240,6,202,208,245,76,34,3,96
100 GOTO 300
110 POKE 800,101
120 POKE 801,48
130 CALL 802
-40 POKE 800,76
150 POKE 801,48
160 CALL 802
170 POKE 800,60
180 POKE 801,48
190 CALL 802
200 POKE 800,52
210 POKE 801,96
220 CALL 802
230 POKE 800,60
240 POKE 801,48
250 CALL 802
260 POKE 800,52
270 POKE 801,255
280 CALL 802
290 RETURN
300 HOME
310 FOR X = 1 TO N
320 GR
330 FOR L = 1 TO 1200: NEXT L
340 COLOR=9
350 HLIN 12,27 AT 13
360 HLIN 12,27 AT 27
370 HLIN 13,27 AT 12
380 VLIN 13,27 AT 27
390 FOR K = 1 TO 12
400 POKE 800,150-K*6
410 POKE 801,150
420 CALL 802
430 COLOR=3
440 PLOT K*3+1,20
450 PLOT K*3+2,20
460 PLOT K*3+1,21
470 PLOT K*3+2,21
480 FOR L = 1 TO SP*10
490 IF PEEK(-16287) > 127 THEN 520
500 IF PEEK(-16384) = 155 THEN 700

72

510 NEXT L: GOTO 540
520 IF K > 3 AND K < 9 THEN 610
F30 GOTO 580
540 COLOR=0
550 PLOT K*3+1,20
560 PLOT K*3+2,20
570 PLOT K*3+1,21
580 PLOT K*3+2,21
590 NEXT K
600 GOTO 690
610 GOSUB 110
620 FOR K = 1 TO 5
630 FOR L = 1 TO 750: NEXT L
640 COLOR=10+K
650 FOR J = 1 TO 14
660 VLIN 14,26 AT 12 + J
670 NEXT J: NEXT K
680 ?OR L = 1 TO 1000: NEXT L
690 NEXT X
700 POKE -16368,0
710 TEXT: HOME
720 END

In the above SCAN TRACKING program a switch check is not used to prevent

continuous responses. If the switch is pressed prior to the cursor entering
the box, the screen is cleared and the next item presented. In other words,
positive feedback is provided only if the switch is engaged when the cursor
is in the designated area.

As with other scan tracking tasks of this type, verbal and/or physical
prompts should be provided as needed to demonstrate what occurs when the
cursor is in the box and the switch engaged. However, the ultimate goal is
for a student to successfully engage the switch with no prompts whatsoever.

Low-resolution Applications

Game Activities

For students capable of a more challenging task, the concept underlying
NILT'S NOSE can be used to create a things-that-fall-from-the-sky arcade game.
For this program, seven blocks are displayed at the top of the screen. The

blocks can be described as spaceships, aliens, etc. in the traditional arcade

scenario. One of the blocks is randomly selected, and slowly moves from top

to bottom. If the switch is engaged while the block is in the target area,
the Apple beeps and a hit is scored.

10 REM ARCADE
20 REM
30 DIM V(40)
40 HOME: GR
50 COLOR=15
60 FOR K = 4 TO 36 STEP 5
70 FOR J= 1 TO 3
80 HLIN K,K+2 AT J
90 NEXT J: NEXT K
100 FOR K = 1 TO 7
110 R = INT(RND(1)*7+1)
120 IF V(R) = 1 THEN 110
130 V(R) = 1
140 R = R*4+(R-1)

73

150 FOR L = 1 TO 750: NEXT L
160 COLOR=2
170 VLIN 25,27 AT R-1
180 VLIN 25,27 AT R+3
190 COLOR=0: J = 1
200 FOR J = 0 TO 12
210 COLOR=15: GOSUB 390
220 FOR D = 1 TO 75
230 IF PEEK(-16287) > 127 THEN 250
240 NEXT D: GOTO 270
250 IF J = 8 THEN 290
260 GOTO 320
270 COLOR=0: GOTO 390
280 NEXT J: GOTO 320
290 FOR L= 1 TO 7
300 PRINT CHR$(7): NEXT L
310 COLOR=3: GOSUB 390
320 FOR L = 1 TO 2000: NEXT L
330 COLOR=0
340 VLIN 25,27 AT R-1
350 VLIN 25,27 AT R+3
360 NEXT K
370 TEXT: HOME
380 END
390 FOR L= 1 TO 3
400 HLIN R,R+2 AT J*3+L
410 NEXT L
420 RETURN

Joystick Graphics

If a student is able to use a joystick, most programs are easily modified

to read joystick input. The left-right joystick movement is controlled by the

BASIC statement PDL(0), and the up-down joystick is controlled by PDL(1).

When the joystick is first connected to the nine-pin game port, the

computer reads the position of the horizontal and vertical axis by means of

PDL(0) and PDL(1). If the joystick is in center position, PDL(0) and PDL(1)

should return a value of approximately 125.

The horizontal and vertical axis input can be a value ranging from 0 to

255. If unsure about how a joystick reads left-right and up-down input,
connect a joystick to the nine-pin game port and run the INPUT CHECK prooram
described in Chapter 2. This program is also useful for determining whether
the joystick is operating correctly and to adjust the axis trim controls which
determine the initial value returned by the joystick when in the neutral

position.

The JOYSTICK program first reads the PDL(0) and PDL(1) statements to
determine if the joystick has been moved. If the joystick has been moved
left, and P1 is less than 50, the value of H is reduced by 1. If the joystick

is moved right, and P1 is greater than 200, 1 is added to H. The same

principle is used to determine the vertical position of the joystick. If V

and H are within acceptable limits (each must be a value between 0 and 39),

a low-resolution dot is displayed at H,V. The program is terminated by
pressing the Esc key.

10 REM JOYSTICK
20 REM
30 H = 20: V = 20
40 GR

74

50 COLOR=15
60 IF PEEK(-16384) = 155 THEN 190
70 P1 = PDL(0)
80 IF P1 < 50 THEN H = H-1
90 IF P1 > 200 THEN H = H+1
100 IF H < 0 THEN H = 0
110 IF H > 39 THEN H = 39
120 P2 = PDL(1)
130 IF P2 < 50 THEN V = V-1
140 IF P2 > 200 THEN V = V+1
150 IF V < 0 THEN V = 0
160 IF V > 47 THEN V = 47
170 PLOT H,V
180 GOTO 60
190 POKE -16368,0
200 TEXT: HOME
210 END

If the joystick displays dots at a speed faster than what a student can
manage, a time delay loop can be inserted in line 175:

175 FOR D = 1 TO 200: NEXT D

To use the entire screen for low-resolution graphics, add lines 45 (this

sets the screen to full graphics mode) and line 46 (this clears the entire
screen to black):

45 POKE -16302,0
46 CALL -1998

Joystick Feedback

The following program provides feedback corresponding to the intensity

of joystick movement. As the program is now set, the intensity of a

"backward" or "pull" joystick response is sensed. The value of PDL(1) is

displayed at the bottom of the screen. The degree to which the joystick is
pulled provides corresponding sound and visual (i.e., low-resolution color)

feedback. This program can be used to reinforce the relationship between
joystick movement and a corresponding screen activity, and to assess the
ability to use a joystick to initiate a screen activity.

10 REM JOYSTICK FEEDBACK
20 REM
30 HOME
40 FOR K = 1 TO 21
50 READ A
60 POKE 801+K,A
70 NEXT K
80 DATA 174,32,3,173,48,192,136,208,5,206,33,3,

240,6,202,208,245,76,34,3,96
90 PS = PDL(1)
100 PI = (255-PS)/39
110 GR
120 XP = PDL(1)
130 VTAB 21: HTAB 18: PRINT XP" "

140 IF PEEK(-16384) = 155 THEN 270
150 H = INT((XP-PS)/PI)
160 IF H = HX THEN 220
170 FOR L = 0 TO H
180 COLOR=INT(L/2.75)+1
190 IF L = 0 THEN COLOR =O

75

200 HLIN 0,39 AT 39-L: NEXT L
210 IF H < 1 THEN H = 1: GOTO 240
220 POKE 800,225-H*4
230 POKE 801,40: CALL 802
240 FOR L = 0 TO 39-H
250 COLOR=0: HLIN 0,39 AT L: NEXT L
260 HX = H: GOTO 120
270 TEXT: HOME
280 POKE -16368,0: END

Touchwindow Input

The program can be further modified to read Touchwindow input. Because
the Touchwindow returns PDL(0) and PDL(1) values in the 0 to 255 range, these
values must be reduced so that they are within the 0 to 39 low-resolution
graphics range (lines 100-130).

10 REM TOUCHWINDOW SKETCH
20 REM
30 GR
40 POKE -16302,0
50 CALL -1998
60 COLOR=15
70 IF PEEK(-16384) = 155 THEN 160
80 P1 = PDL(0)
90 P2 = PDL(1)
100 P1 = INT(P1 /5.14 -5.85)
110 IF 21 < 1 OR 21 > 35 THEN 70
120 P2 = INT(P2 /5.14 -5.85)
130 IF P2 < 1 OR P2 > 35 THEN 70
140 PLOT P1,22
150 GOTO 70
160 POKE -16368,0
170 TEXT: HOME
180 END

Many single switch programs can be converted for use with a Touchwindow

1-17 using the PDL(0) instruction. A Touchwindow might be especially useful
when attempting to show that a direct response can cause a screen effect. A
Touchwindow provides a very close connection between the response and screen
and thus can be used to focus attention to the screen task.

from:
The Nit's Nose program is easily modified for use by changing line 100

100 IF PEEK(-16287) > 127 THEN 380

to

100 IF PDL(0) > 25 THEN 380

The above instruction serves as a switch so that touching the screen is
interpreted as a single switch response. If desired, the exact screen
location can be specified by using PDL(0) and PDL(1) to further delineate
screen coordinates as shown by the following example:

100 IF PDL(0) > 75 AND PDL(0) < 200 PDL(1) > 75 AND PDL(1) < 200 THEN 380

When specifying a specific Touchwindow screen location, be sure that the
designated screen space is of a size that the child or student can touch.
Also, be sure that the Touchwindow location matches the actual computer screen

76

BEST COPY AVAILABLE

location. Additional techniques for using the Touchwindow are discussed in

Chapters 4 and 5.

A Low-resolution Authoring System

An authoring system provides an easy method for creating a task or

activity. The following is a very simple authorinc: system, but it does

illustrate how a series of low-resolution imaaes can be created for use in a

single switch format.

10 REM LOWRES AUTHOR
20 REM
30 MX = 3
40 F$ = "D"
50 GR: HOME: N = 0
60 PRINT "(PRESS SWITCH TO BEGIN OR E FOR EDITOR)"

70 IF PEEK(-16287) > 127 THEN 70

80 IF PEEK(-16287) > 127 THEN 120

90 KY = PEEK(-16384): IF KY = 155 THEN 630

100 IF KY = 197 THEN 170

110 GOTO 80
120 N = N+1: IF N > MX THEN N = 1

130 PRINT
140 PRINT CHR$(4);"BLOAD"F$ + STR$(N)

150 GOTO 70
160 GR
170 CC = 15: HOME
180 PRINT "U=UP D=DOWN L=LEFT R=RIGHT"

190 PRINT "E=ERASE S=SAVE G=GET C=COLOR"

200 PRINT "Q=QUIT W=WRITE X=DON'T WRITE"

210 POKE -16368,0
220 H = 20: V = 20
230 COLOR = CC: PLOT H,V
240 X = PEEK(-16384)
250 IF X > 127 THEN 300
260 FOR L = 1 TO 8: NEXT L

270 IF CC = 0 THEN COLOR=15
280 IF CC > 0 THEN COLOR=0
290 PLOT H,V: GOTO 230

300 X$ = CHR$(X-128): POKE -16368,0
310 IF X$ = "Q" THEN 30

320 IF X$ = "E" THEN 160
330 IF X$ = "C" THEN 490

340 IF X$ = "S" OR = "G" THEN 540

350 IF X$ = "W" THEN D = 0: GOTO 230
360 IF X$ = "X" THEN D = 1: GOTO 230
370 IF D = 1 THEN COLOR = 0: PLOT H,V
380 IF X$ = "U" THEN V = V-1
390 IF X$ = "D" THEN V = V+1
400 IF X$ = "L" THEN H = H-1
410 IF X$ = "R" THEN H = H+1
420 IF H < 0 THEN H = 0

430 IF H > 39 THEN H = 39
440 IF V < 0 THEN V = 0

450 IF V > 39 THEN V = 39

460 IF D = 1 THEN 230

470 PLOT H,V
480 GOTO 230
490 HOME: VTAB 23: HTAB 5

500 PRINT "(MAKE SELECTION AND PRESS RETURN)"

510 VTAB 21: INPUT "COLOR (1 TO 15)? ";CC$

77

520 CC = VAL(CC$)
530 GOTO 230
540 HOME
550 INPUT "FILE NUMBER? ";N$
560 FX$ = F414
570 HOME
580 IF X$ = "G" THEN 610
590 PRINT CHR$(4);"BSAVE";FX$",A1024,L1024"
600 GOTO 620
610 PRINT CHR$(4);"BLOAD";FX$
620 FX$ = "": GOTO 170
630 POKE -16358,0
640 TEXT: HOME
650 END

When the LOWRES AUTHOR is run, first create a series of low-resolution
images so that each image, or part of an image, is stored on disk in a
separate file. When the program is run, each switch response loads and
displays each file in the file sequence.

Before creating files, set variable MX to the number of low-resolution
images specified in line 30. As the program is now written, the program
displays the contents of three low-resolution files with each file name
beginning with a D (see line 40). To use a file name other than "D," set F$
to the desired name in line 40.

In order to edit a low-resolution screen, press E after the prompt. The
various editing commands are shown at the bottom of the screen. Remember that
if MX has been set to 3 in line 30, three files are created by entering 1, 2

and then 3 after the FILE NUMBER PROMPT?

The low-resolution screen is saved on disk in line 590 where A indicates
the beginning address of the file and L signifies the length of the file.

Screen Inversion

The low-resolution screen can be Lnverted by changing screen locations
containing a low-resolution dot to black, and all locations that are black to

a color. This is done to invert low-resolution screens or to create low-

resolution graphics by entering black low-resolution dots on an all-white

screen (use the X or don't write command). The low-resolution screen
inversion consists of the following modifications:

305 IF X$ = "I" THEN 1000
1000 FOR K = 1024 TO 2039
1010 MC = PEEK(K)
1020 IF MC = 0 THEN MC = CC*17: GOTO 1060
1030 IF MC < 16 THEN MC = CC*16: GOTO 1060
1040 IF INT(MC/16) = MC/16 THEN MC = CC: GOTO 1060

1050 MC = 0
1060 POKE K,MC: NEXT K
1070 GOTO 170

Low-resolution Screen File Names

Low-resolution screens are saved as binary files on disk. Each file
requires approximately 6 sectors of space and has a catalog entry similar to

the following:

B 006 YES

78

The low - resolution graphics image YES in the file YES (there is a difference)
was created using the LOWRES AUTHOR program.

Instead of using the LOWRES AUTHOR to save files in a sequence of files,
specific file names can be created in order to be used with other programs.
By changing line 550 and deleting line 560, each file is saved using the exact

file name specified:

550 INPUT "FILE NAME? ";FX$
560

If the program disk is being used, make the above modification and then
run the LOWRES AUTHOR program. En-..er E to edit a file, and then enter YES
following the FILE NAME prompt.

Although using low-resolution files is a rather slow task, the following
easy-to-write routine illustrates how a low-resolution file such as YES file
is loaded and displayed each time the switch is engaged.

10 REM LOWRES SCREEN
20 REM
30 FX$ = "YES"
40 HOME
50 GR
60 COLOR=2
70 IF PEEK(-16287) > 127 THEN 70
80 IF PEEK(-16287) > 127 THEN 110
90 KY = PEEK(-16384): IF KY > 127 THEN 110
100 GOTO 80
110 POKE -16368,0
120 IF KY = 155 THEN 160
130 PRINT CHR$(4);"BLOAD ";FX$
140 FOR L = 1 TO 3500: NEXT L
150 GOTO 50
160 TEXT: HOME
170 END

When the above program is run, the low-resolution file specified in line

30 is loaded and displayed each time the switch is engaged. The low-
resolution screen appears for approximately five seconds (as determined by the

timing lool.Sin line 140) before the screen is cleared. Press Esc to exit the

program.

The color of the screen can be changed by modifying line 60. The

following change results in a different color each time the low-resolution

image is displayed.

60 C = C + 1: IF C > 15 THEN C = 1
65 COLOR=C

Low-resolution Memory

The above program is a bit cumbersome because the low-resolution screen

file is loaded and displayed each time the program is run. A more efficient
method is to load the file once, and then switch back and forth between the
low-resolution image and a second, albeit blank, low-resolution screen.

This can be accomplished, but not without some difficulty. The Apple
computer actually has two low-resolution screens referred to as page 1 and

page 2. The problem with using page 2 low-resolution graphics is that it is

difficult to access because this is where BASIC programs are initially stored.

79

In order to use both low-resolution pages, the initial memory starting
point for storing BASIC programs must be changed. This can be accomplished
by entering the following program and then saving the program on disk (don't

run the program just yet):

10 REM MEMORY MOVE
20 REM
30 HOME
40 VTAB 2: PRINT "MEMORY MOVE ROUTINE:"
50 VTAB 7
60 PRINT "OLD STARTING ADDRESS:";
70 PRINT PEEK(103) + PEEK(104) * 256
80 PRINT: PRINT
90 INPUT "NEW STARTING ADDRESS: ";A
100 POKE A-1,0
110 POKE 103, A-INT(A/256)*256
120 POKE 104, INT(A/256)
130 3ND

Run the above program and then enter 24576 as the starting address for
BASIC programs following the prompt NEW STARTING ADDRESS. Now run the
modified LOWRES SCREEN-2 program:

10 REM LOWRES SCREEN-2
20 REM
30 HOME
40 FX$ = "YES"
50 GR
60 PRINT CHR$(4);"BLOAD";FX$
70 POKE -16299,0
80 POKE -16302,0
90 COLOR=2
100 IF PEEK(-16287) > 127 THEN 100
110 IF PEEK(-16287) > 127 THEN 140

120 KY = PEEK(-16384): IF KY > 127 THEN 140
130 GOTO 110
140 POKE -16368,0
150 IF KY = 155 THEN 200
170 POKE -16301,0
160 POKE -16300,0
180 FOR L = 1 TO 3500: NEXT L
190 GOTO 70
200 TEXT: HOME
210 END

To return to the BASIC starting address that is used when the system is
first booted (i.e., 2049), enter FP and press RETURN:

For most low-resolution single switch applications, there is no need to

change the starting memory address for BASIC programs. However, for hiah-
resolution applications which can require a considerable amount of memory,
changing the starting address is required in order to prevent memory overlap
between the BASIC program and the memory used by the high-resolution graphics

screen. When this occurs, a good chunk of the BASIC program currently in

memory will "bomb." Consult Chapter 6 for a discussion concerning the use of

the MEMORY MOVE program in order to increase BASIC programming memory when

used with high-resolution graphics.

Soft Switches

The POKE's -16299,0 and -16302,0 in the LOWRES SCREEN-2 program are seen

80

frequently in single switch programs and are referred to as "soft switches"
in that each time the values are poked the software makes the appropriate
graphics switch. In LOWRES SCREEN-2 program, POKE -16299,0 causes the program
to switch from page 1 to page 2 graphics; likewise, POKE-16300,0 causes the
program to switch from page 2 to page 1 graphics.

The following is a list of various soft switches, the decimal equivalent,
and a very brief description concerning how each is used. Using soft switches
within a program does take a bit of practice, especially regarding various
switch combinations, but the following should give some idea as to the purpose
of a soft switch when encountered in a single switch program.

POKE -16297,0 or POKE 49239,0 (switch to high-resolution graphics)
POKE -16298,0 or POKE 49238,0 (switch to low-resolution graphics)
POKE -16299,0 or POKE 49237,0 (switch to page 2 graphics)
POKE -16300,0 or POKE 49236,0 (switch to page 1 graphics)
POKE -16301,0 or POKE 49235,0 (switch to split-screen graphics)
POKE -16302,0 or POKE 49234,0 (switch to full screen graphics)
POKE -16303,0 or POKE 49233,0 (switch from graphics to text)
POKE -16304,0 or POKE 49232,0 (switch from text to graphics)

81

Chapter 4

Sound and Speech

Built-In Apple Sound

Easy-to-Use Sound Functions

Whether it is a beep, a musical tune, or speech, sound can be an
excellent enhancement for many programs. Likewise, being able to disable the
sound component might be just as important. The following section describes
how sound can be used to enhance single switch program:, (or any other program
for that matter), and how to modify the sound routine to produce whatever
sound is desired. Needless to say, one's ability to orchestrate sound and
music is much dependent on one's knowledge of sound and music.

The FACE program is used to illustrate how a very simple cause/effect
single switch routine can be modified to incorporate sound and even music.
Each time the switch is activated, part of a face is displayed on screen. The
graphics can be changed to display a house, car, birthday cake, or whatever
else might be of interest to the child.

10 REM FACE
20 REM
30 HOME
40 GR
50 COLOR=9
60 GOSUB 520
70 PLOT 20,15
80 PLOT 19,16: PLOT 21,16
90 GOSUB 520
100 COLOR=1
110 HLIN 15,25 AT 5
120 GOSUB 520
130 COLOR=13
140 PLOT 14,6: PLOT 13,7
150 PLOT 26,6: PLOT 27,7
160 GOSUB 520
170 VLIN 8,24 AT 12
180 VLIN 8,24 AT 28
190 GOSUB 520
200 PLOT 13,25: PLOT 14,26
210 PLOT 15,27: PLOT 16,28
220 PLOT 27,25: PLOT 26,26
230 PLOT 25,27: PLOT 24,28
240 GOSUB 520
250 COLOR=/
260 HLIN 17,23 AT 29
270 GOSUB 520
280 COLOR=12
290 PLOT 17,10: PLOT 18,10
300 PLOT 17,11: PLOT 18,11
310 GOSUB 520
320 COLOR=14
330 PLOT 22,10: PLOT 23,10
340 PLOT 22,11: PLOT 23,11
350 GOSUB 520
360 COLOR=9

82

370 HLIN 17,23 AT 22
380 FOR K = 1 TO 4
390 GOSUB 520
400 COLOR=0
410 PLOT 17,22: PLOT 23,22
420 COLOR=9
430 PLOT 17,21: PLOT 23,21
440 FOR L = 1 TO 750: NEXT L
450 COLOR=0
460 PLOT 17,21: PLOT 23,21
470 COLOR=9
480 PLOT 17,22: PLOT 23,22
490 NEXT K
50' TEXT: HOME
510 END
520 IF PEEK(-16287) > 127 THEN 520

530 IF PEEK(-16287) > 127 THEN 550

540 GOTO 530
550 RETURN

When the above program is run, each switch response displays a part of

a face. After the complete face is displayed, each switch response causes the

face to "smile." The FACE program listing shows how the low-resolution face

is sequentially displayed following each switch response. The program is

divided into 10 components so that each component begins with a switch input

subroutine (GOSUB 520), followed by a low-resolution image segment. The 10

components begin with the following line numbers:

Line # Function

60 nose
90 top line
120 top colliers
160 vertical lines
190 bottom corners
240 bottom line
270 left eye
310 right eye
350 mouth
390 mouth movement

The Apple II+, IIe and IIc models do not have a great deal of easy-to-use

sound capabilities. The primary attribute of these models is the ability to

generate a beep or a click which is useful but not the stuff of which best

sellers are made.

The beep or bell sound (think of the bell sound on an old typewriter) is

produced by CHR$(7). Enter the following, press RETURN, and the Apple beep

should be heard:

PRINT CHR$(7)

The beep can be added to the switch subroutine (lines 520 to 55C' to

enhance each switch response:

550 PRINT CHR$(7)
560 RETURN

The beep can also be enclosed in a loop so that each time the switch is

activated to create a low-resolution smile, a series of beeps is sounded:

440 FOR L = 1 TO 5

83

C
C'

445 PRINT CHR$(7): NEXT L

As was already said, the Apple is capable of producing a beep and a
click. The click is sounded by PEEK(49200) or PEEK(-16366). The click is
very brief, but a series of clicks will produce an audible buzz. Change lines
440 and 445 and run the program:

440 FOR L = 1 TO 50
445 X = PEEK(49200): NEXT L

Programming for Music

There is a way to produce a variety of musical notes and sound effects
by using the Apple "click" sound. This is accomplished by clicking the Apple
speaker at an extremely fast rate so that the resulting sound is no longer a
buzz but a tone that can be adjusted with respect to duration and pitch.
However, to do this a machine language subroutine must be used.

But a word of caution: my musical ability is minimal (and this is an

overstatement). Because of this, I can show how to generate sound, and
provide the necessary software, 'cut you will need to exercise your own musical
creativity to take full advantage of these techniques.

The machine language sound capability of the Apple is illustrated by the

SOUND program shown below:

10 REM SOUND
20 REM
30 FOR K = 1 TO 21: READ A
40 POKE 801+K,A: NEXT K
50 DATA 174,32,3,173,48,192,136,208,5,206,

33,3,240,6,202,208,245,76,34,3,96
60 HOME
70 GR
80 IF PEEK(-16287) > 127 THEN 80
90 IF PEEK(-16287) > 127 THEN 120
100 KY = PEEK(-16384): IF KY > 127 THEN 120
110 GOTO 90
120 IF KY = 155 THEN 230
130 POKE -16368,0
140 R = INT(RND(1)*40)
150 C = INT(RND(1)*15+1)
160 COLOR=C
170 GOSUB 5000
180 IF RND(1) > .5 THEN 210
190 HLIN 0,39 AT R
200 GOTO 80
210 VLIN 0,39 AT R
220 GOTO 80
230 TEXT: HOME
240 POKE -16368,0: END
5000 POKE 800,100
5010 POKE 801,200
5020 CALL 802
5030 POKE 800,75
5040 POKE 801,150
5050 CALL 802
5060 RETURN

Each time the switch is engaged, either a vertical or horizontal line
having a randomly selected color is displayed. The sound that accompanies

84

C.

each switch response is produced by lines 5000 to 5050. These lines begin
with the rather large line number so that this subroutine can be added to
other BASIC programs that might be used.

The purpose of the machine language routine is the ability to click the
speaker at an extremely rapid rate, a task that cannot be accomplished by
using the slower running BASIC language. If entered as shown, the routine
provides a reasonably efficient method for adding sound to BASIC programs.

To generate a note, three statements are used: one statement to signify
the pitch or frequency, a second statement to indicate the duration of the
note, and a third statement to CALL a special machine language subroutine (see
lines 30, 40 and 50) to produce the sound. The frequency and duration of
each note is determine by two POKE statements. The first value in each POKE
indicates the memorl, location where the value is to be stored, and the second
value is the frequency or duration value stored in the specified location.

Playing a Note

POKE 800,101
POKE 801,200
CALL 802

(sets pitch)
(sets duration)
(plays note)

To raise the pitch, the value poked in memory location 800 is deceased
(the lowest value is 1); and to lower the pitch, this value is increased (the
highest value is 255).

Changing Pitch

POKE 800,50
POKE 800,150
POKE 800,100

(high pitch)
(low pitch)
(average pitch)

After the pitch is set, a second POKE is used to indicate the duration.
To decrease the duration, use a smaller value in this statement; and to
increase the duration, use a larger value.

Changing Duration

POKE 801,50
POKE 801,200
POKE 801,255

(short duration)
(longer duration)
(maximum duration)

By changing the values in the subroutine, everything from music to sound
effects can be created. Add these lines and see what sound is produced:

5000 POKE 800,101
5010 POKE 801,48
5020 CALI 802
5030 POKE 800,76
5040 POKE 801,48
5050 CALL 802
5060 POKE 800,60
5070 POKE 801,48
5080 CALL 802
5090 POKE 800,52
5100 POKE 801,96
5110 CALL 802
5120 POKE 800,60
5130 POKE 801.48
5140 CALL 802
5150 POKE 800,52

85

5160 POKE 801,255
5170 CALL 802
5180 RETURN

A different subroutine can be added by first deleting lines 5000 to 5170
and then adding the new sound routine:

5000 FOR K = 1 TO 200 STEP 10
5010 POKE 800,200-K
5020 POKE 801,10
5030 CALL 802
5040 NEXT K

The above subroutine generates a "snappy" run through the

scale...although I'm not sure exactly what scale!

To produce a slightly different effect, make this change:

5010 POKE 800,10+K

Or make these changes to produce a type of computer mania:

5000 FOR K = 1 TO 25
5005 X = INT(RND(1)*245)
5010 POKE 800,10+X

Adding sound to a software application is a relatively easy matter, and

the only limit is one's musical creativity (of which mine is extremely

limited). To add a sound routine to another BASIC program, do the following:

1) Add the machine language program to the beginning of the program. Be

careful not to enter the routine over line numbers that are currently in use;

2) Add th-; GOSUB statement in the program where sound created by the

subroutine is generated;

3) Add the two POKE statements and CALL for each note in the music

subroutine. Be sure not to enter the subroutine over existing program lines.
If the routine is to be inserted in lines 5000 to 5180, LIST these lines to

make sure they are empty.

Now back to the FACE program that began this chapter but was so void of

musical enhancements. Load this program and add these lines:

22 FOR K = 1 TO 21: READ A
24 POKE 801 + K,A: NEXT K
26 DATA 174,32,3,173,48,192,136,208,5,206,

33,3,240,6,202,208,245,76,34,3,96
550 X = X+10
560 POKE 800,250-X
570 POKE 801,100
580 CALL 802
590 RETURN

Each time the switch is engaged, a note is generated and a segment of the

face displayed. Experiment with lines 560 and 570 to produce different

sound/music effects.

or try

560 POKE 800,150+X

86

550 X = X+15
560 POKE 800,250-X

Variable X can also be set to a random number in line 550:

550 X = INT(RND(1)*200+50)
560 POKE 800,X

Or play a combination of notes following a switch response:

550 POKE 800,200: POKE 801,80: CALL 802
560 POKE 800,200: PCXE 801,80: CALL 802
570 POKE 800,100: POKE 801,160: CALL 802
580

Two Switch Applications

Before leaving our "soundful" FACE program, let's consider the

possibility of reading input from two switches. If the following
modifications are added to the above program, alternate switch input, first

from PEEK(-16287) then PEEK(-16286), must be used to display each face
component.

520 IF SW = -16287 THEN SW = -16286: GOTO 525
521 SW = -16287
525 IF PEEK(SW) > 127 THEN 525
526 IF PEEK(SW) > 127 THEN 550
527 GOTO 526

How to Delete Program Sound

Although creating sound can be an important component of single switch
programming, the ability to delete sound or turn off sound can be just as

important. In some situations the sound used in a program might be disruptive

to others in the class, unnecessary, or simply too long.

After the routine in the program used to generate the sound has been

found, several approaches can be used to by-pass the unwanted feedback. If

a subroutine is used to generate the sound, the subroutine ends with the word

RETURN. By entering RETURN at the beginning of the subroutine, the sound
routine ce.n be effectively by-passed.

For the last program entered, add this statement and run the program:

5005 RETURN

A second method for by-passing sound, or anything else for that matter,
is to "jump over" the routine with a GOTO statement. To illustrate how this
works, first delete line 5005 so that the sound routine is intact. Next, add

line 165 to jump over the GOSUB statement that calls the sound routine:

165 GOTO 180

Another technique that can be used is to input a value or code at the
beginning of the program which determines whether or not sound is to be

generated:

65 INPUT "DO YOU WANT SOUND (Y/N)? ";SD$
66 SD$ = LEFT$(SD$,1)
67 HOME

87

165 IF SD$ = "N" THEN 180

Yet another solution to the problem of a noisy computer is to connect
headphones to the Apple or to the Echo' or Echo lib' speech synthesizer (see
the next section).

Synthesized Speech

This section describes how to generate Echo synthesized speech in

conjunction with a single switch BASIC application. If an Echo is not
available (and this is real "must" for anyone interested in single switch
applications), the programs in this section will run but without corresponding
speech output.

Echo Installation

In order to use an Echo speech synthesizer, first read the instructions

in the Echo manual. Next, install the Echo card (be sure the system is off)

into one of the slots (usually 4, 5 or 7). For II3s users, the Echo cannot be

installed in slot #3. If possible, use slot #7. If a is being used and

slot #7 is not available, use the control panel to disable the assigned slot

function.

The Echo board is installed by carefully inserting the board into one of

the empty slots. To get the board into the slot, work the board into the slot

by carefully "rocking" the board into position. After the speaker has been
connected, the Echo should be ready to "synthesize."

For the Echo to be able to function, two programs must be on the DOS 3.3
disk: TEXTALKER- and TT.OBJ (short for TEXTALKER OBJECT program). Copy these

programs from the Echo disk or program disk by using the DOS 3.3 System Master
Disk, a copy program, or by first loading each file from the Echo or program

disk and then saving each on the DOS 3.3 disk as shown below. The B
preceding the LOAD, SAVE and RUN commands indicates that the files being used

are binary.

BLOAD TEXTALKER

BSAVE TEXTALKER, A37632, L528

BLOAD TT.OBJ

BSAVE TT.OBJ, A8192, L11956

(Load from Echo disk)

(Save on DOS 3.3 disk)

(Load from Echo disk)

(Save on DOS 3.3 disk)

To show how the Echo can be turned on, used to say a word, enter the
following:

BRUN TEXTALKER

W$ = "HELLO"
G$ = CHR$(5)
PRINT G$ "T "W$" "G$"0"
PRINT W$
PRINT G$ "B "W$" "G$"0"
PRINT W$
PRINT 0$"B"
PRINT W$

88

So as not to confuse the Echo, it is a good idea to begin and end each
string via the Echo with a space (i.e., " "W$" ").

Another simple routine that can be used to check and test the Echo speech
is the following:

10 INPUT W$
20 PRINT CHR$(5)"T "W$" "CHR$(5)"0"
30 IF W$ = "Q" THEN END
40 GOT 10

Programming for Speech

The TALK program illustrates how use the Echo with a BASIC program. Th.

first line in the program loads the TEXTALKER program (which, in turn, loads
the TEXTALKER OBJECT program) necessary to generate speech.

10 REM TALK
20 REM
30 PRINT CHR$(4):"BRUN TEXTALKER"
40 FOR L = 1 TO 1000: NEXT L
50 G$ = CHR$(5): PRINT G$"0"
60 FOR K = 1 TO 8
70 READ S$(K),ES$(K)
80 NEXT K
90 DATA YES, YES
100 DATA NO, NO
110 DATA DRINK, I'M THIRSTY.
120 DATA MUSIC, I WANT TO LISTEN TO MUSIC.
130 DATA HELP, I NEED HELP!
140 DATA THANKS, THANK YOU!
150 DATA ?, I DON'T UNDERSTAND.
160 DATA I, THAT'S GREAT!
170 HOME
180 FOR D = 1 TO 8
190 VTAB D*2+2: HTAB 10
200 PRINT S$(D): NEXT D
210 VP = 1
220 VTAB VP*2+2: HTAB 10
230 INVERSE: PRINT S$(VP): NORMAL
240 FOR D = 1 TO 100
250 IF PEEK(-16287) > 127 THEN 320
260 IF PEEK(-16384) = 155 THEN 370
270 NEXT D
280 VTAB VP*2+2: HTAB 10
290 PRINT S$(VP)
300 VP = VP+1: IF VP > 8 THEN VP = 1
310 GOTO 220
320 VTAB 21: HTAB 3: PRINT ES$(VP)
330 PRINT G$"T "ES$(VP)" "G$"0"
340 FOR D = 1 TO 2000: NEXT D
350 VTAB 21: CALL -868
360 GOTO 180
370 POKE -16368,0
380 VTAB 23
390 END

The program first loads the software necessary to use the Echo card that

has been installed. The CHR$(4) instruction in line 30 indicates that a DOS
command follows (which is to load and run the binary file TEXTALKER from the

89

program disk).

The program then reads eight pairs of words or statements, such that the
first element of each pair is stored in S$(K) and the second element is stored
in ES$(K). The first element of each pair is what is displayed and scanned
on screen, and the second element is what is spoken by the Echo. For example,
if the word DRINK is scanned and selected, the Echo generates I'M THIRSTY.
The elements of each pair can be modified by changing the DATA statements
which begin in line 90.

In line, 50 G$ is set to CHR$(5) or Control+E which is used to initiate

all Echo commands. The following is a list of several important Echo commands
(be sure to consult the Echo manual for additional commands that might be of

use):

PRINT CHR$(5)"0"
PRINT CHR$(5)"T"
PRINT CHR$(5)"B"

(Print Only)
(Talk Only)
(Print and Talk)

If several changes are being made in a program which uses the Echo, a
small inconvenience can occur each time the program is interrupted and then

re-run. What happens is that the Echo is loaded each time the program is run,

even though the program is already in memory. If using a disk that is
entirely dedicated to Echo programs, this problem is solved by including the
following statement in the HELLO program when the disk is first booted:

25 PRINT CHR$(4);"ERUN TEXTALKER"

Then change line 30 in the TALK program as follows:

30 PRINT CHR$(4);"PR#0"

This command reconnects the Echo following a program interruption. To see how
this works interrupt the program, enter line 30, and then re-run the program.
When the switch is engaged, the output is displayed on the screen but with no

speech. Now enter PR#0, RUN the program, and the Echo is reconnected:

PR#0
RUN

If the Echo is talking but does not display input on the screen, enter the

following:

PRINT CHR$(5);"B"

Before going on to the next program, modify one of the DATA statements
in lines 90 to 160 in the TALK program as illustrated by the following:

120 DATA TV, I WANT TO WATCH TELEVISION.

In order to synthesize each stimulus statement as it is being scanned,

add the following line:

235 PRINT G$ "T "S$(VP)" "G$"0"

Internal Program Echo Reconnect

The Echo can be automatically reconnected from within a program whenever
the application is run. This is accomplished by setting a memory location

that is not used to a specified value. When the program is run, if the
specified value is encountered, the Echo is reconnected by PR#0 rather than

90

by re-running the TEXTALKER. The following changes illustrate how this
modification is made using the TALK program described above.

25 IF PEEK(1000) = 99 THEN 37
35 POKE 1000,99
36 GOTO 40
37 PRINT CHR$(4);"P7k#0"

When 99 (and this can be any value other than the value present when the
Apple is first booted) is entered in location 1000, this value remains even
if the CLEAR is used within a program, if the program is interrupted, or if
a different program is run. The value 99 is erased when the Apple is booted.

To run the TEXTALKER program when the location 1000 has been set to a
specified value (e.g., something in the program being used might have "bombed"
the TEXTALKER), either eliminate the PEEK check statement or reset the
location by entering:

POKE 1000,0

Echo Bugs

If the Echo TEXTALKER program has not been loaded, or the Echo has
somehow been disconnected, and an attempt to generate speech has been made,
the Echo commands and string is displayed but obviously without accompanying
speech:

T HELLO 0

When installing the Echo in a IIs, use slot 47 if possible. If

necessary, disable the normal slot setting by means of the control panel.

If another Apple utility program is used, especially one that uses an
ampersand (&), this might "clobber" the Echo. If this happens, re-run, or if
necessary, re-boot the system.

Echo Commands

To experiment with the various Echo commands available, load the

TEXTALKER program:

BRUN TEXTALKER

Or if the TEXTALKER has already been loaded but is disconnected, reconnect the

program by entering:

PR#0

Now use PRINT statements to elicit Echo speech:

PRINT "HELLO"

PRINT "PLEASE, PRESS THE SWITCH"

The Echo volume can be set by using CONTROL+E N V where N is a value
between 0 and 15. The present or default value of volume is 12. This
function can be used within a program or by a PRINT statement:

Or
PRINT CHR$(5);9;"V"

91

Cf-7104,

PRINT CHR$(5)"9V"

To experiment with Echo commands, try following simple. Change the V to P in
line 40
to vary the pitch rather than the volume.

10 PRINT CHR$(4)"PR#0"
20 INPUT X$
30 IF X$ = "0" THEN END
40 PRINT CHR$(5);X$;"V"
50 PRINT "HOW ARE YOU"
60 GOTO 10

The volume can vary from 0 (least loud) to 15 (most loud), and the
default value when first run is 12; pitch can vary from 1 (lowest pitch) to

63 (highest pitch), and the default value when first run is 22. To add a
delay between words, enter the following:

45 PRINT CHR$(5)"10D" (the delay can range from 0 to 15)

When first run the default punctuation setting is SOME (CONTROL+E"S" or
PRINT CHR$(5)"S"), the ALL punctuation setting is activated (e.g., the

spacebar generates the word "space") by the following:

G$ = CHR$(5)
PR#0
PRINT CHR$(5)"A"

a MOST punctuation command is also possible: PRINT G$ "M ".

When the E,no is first loaded, the TEXTALKER is set to say words. This

is changed so that words are pronounced letter-by-letter by the following:

PRINT G$"L"

Word pronunciation is reset by

PRINT G$"W"

To change the speed for Echo speech to compressed or fast mode, enter

PRINT G$"C"

and this to change back to the default expanded or slow rate mode

PRINT G$"E"

The following brief can be used to test various Echo characteristics by
generating alphabet characters A to Z. Change line 20, or add an additional
line, to test additional Echo commands.

NEW
10 PRINT CHR$(4)"PR#0"
20 PRINT CHR$(5)"C"
20 FOR K = 1 TO 26
30 PRINT CHR$(64+K)
40 NEXT K

When the Echo is running, CONTROL+S can be used to momentarily interrupt
the program or CONTROL+C to break the program run. For additional Echo
command information, consult the Echo manual.

92

Phoneme Codes

When Control+V or CHR$(22) precedes a group of characters, the symbols
are interpreted as phonemes rather than letters. The Echo IIb manual contains
a list of the possible phoneme codes on Appendix E. To sample several phoneme

codes words, be sure the Echo is connected (PR#0) and then set CV$ to
CHR$(22):

CVS = CHR$(22)

Now enter the following print statements so that each string os phoneme codes

is preceded by CV$:

PRINT CV$ "GQ3D"
PRINT CV$"S;R3Q"
PRINT CV$"KORE3KT"
PRINT CV$"HEL01"
PRINT CV$ "SZ &"

In the first PRINT statement, the Q is the phoneme code for the long o

as in book, and the value 3 following the vowel oo indicates that the vowel
is stressed. The last PRINT statement is the name of the letter "Z". Although

phonetically spelling words can be used inmost instances to synthesize a word

that has the desired pronunciation, the phoneme commands do add a degree of
exactness to this "hit and miss" process.

Female Speech

The male robotic voice of the Echo can be replaced by female speech, but
not without some difficulty and the loss of considerable text-to-speech
flexibility. To experiment with this option, boc,t the Echo ProDOS IIb disk

containing the Word Edito:. Enter the words COMPUTER, ECHO II and HELLO. Use

the closed-Apple+T combination to say a bracketed word: (COMPUTER....).

Another way to experiment with the female voice capability is to BRUN the

SAY program, load the sample word file, and then use the &SHOWWRDS to see what

words are in this file. The &SAY command is ther. used to say the words in the

word file:

BRUN SAY
BLODWRDS,"SAMPLE"
&SHOWWRDS
&SAY,"I","LIKE","THE","ECHO II"

Consult the Echo IIb manual for detailed information concerning the
development and use of Fixed Vocabulary Female Speech. When done with ProDOS,

remember to re-boot the DOS 3.3 program disk in order to use other programs
described in this manual.

Matrix Scanning

Single Switch Spelling

The SPELLTALK program uses a matrix to scan the letters of the alphabet.

The alphabet aLd punctuation are displayed using five screen lines. Each

matrix row is scanned to first select a sequence of characters. A second scan

is then used to select the specific letter or character in that sequence.

Thus, to select a character two switch movements must be made: row selection
and then the specific character selection.

93

Although row/element scanning is fairly efficient, he two switch task can
be difficult for some individuals to conceptualize. The alternative, and a
procedure better suited for smaller matrices, is sequential element scanning
(see the language board section) in which each element of the matrix is
scanned in sequential order.

A B C D E F

G H I J K L

M N O P Q R

S T U V W X

Y Z

After a character is selected, the letter is spoken and displayed at the

bottom of the screen. To speak an entire word or message, press the T key.
When entering this program, and when modifying lines 60 through 100, spacing

is essential. There are three spaces between each character. In the program

listing shown below, line 100 is entered as follows, where the symbol
signifies a space:

100 S$(5)."Y000z000.000?"
10 REM SPELLTALK
20 REM
30 PRINT CHR$(4);"BRUN TEXTALKER"
40 FOR L = 1 TO 1000: NEXT L
50 G$ = CHR$(5): PRINT G$"0"
60 S$(1) = "A B C D E F"
70 S$(2) = "G H I J K L"
80 S$(3) = "M N 0 P Q R"
90 S$(4) = "S T U V W X"
100 S$(5) = "Y Z . ?"

110 HOME
120 HTAB 15: PRINT "SPELLTALK"
130 VP = 1
140 FCR D = 1 TO 5
150 VTAB VP+D*3: HTAB 9
160 PRINT S$(D): NEXT D
170 VTAB VP*3+1: HTAB 9
180 INVERSE: PRINT S$(VP): NORMAL
190 GOSUB 510
200 IF SW = 1 THEN SW = 0: GOTO 270
210 VTAB VP*3+1: HTAB 9
220 PRINT S$(VP)
230 VP = VP+1: IF VP > 5 THEN VP = 1
240 VTAB VP*3+1: HTAB 9
250 INVERSE: PRINT S$(VP): NORMAL
260 GOTO 190
270 VTAB VP*3+1: HTAB 9
280 PRINT S$(VP)
290 VTAB VP*3+1: HTAB 9
300 INVERSE
310 PRINT MID$(S$(VP),1,1)
320 NORMAL
330 HP = 9
340 GOSUB 510

94

C4//

350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680

VTAB VP*3+1: HTAB HP
PRINT MID$(S$(VP),HP-8,1)
IF SW = 1 THEN 460
HP = HP+4
IF HP > 29 THEN HP = 9
VTAB .7*3+1: HTAB HP
INVERSE
PRINT MID$(S$(VP),HP-8,1)
NORMAL
GOTO 340
SW = 1
C$ = MID$(S$(VP),HP-8,1)
M$ = M$ + C$
PRINT G$"T "C$" "G$"0"
VTAB 20: HTAB 1: PRINT M$
GOTO 130
IF PEEK(-16287) > 127 THEN
FOR D = 1 TO 100
IF PEEK(-16287) > 127 THEN
KY = PEEK(-16384): IF KY >
NEXT D: SW = 0: RETURN
POKE -16368,0: SW = 1
IF KY = 155 THEN 680
IF KY = 212 THEN 600
GOTO 620
PRINT G$ "T "M$" "G$"0"
GOTO 130
IF KY = 195 THEN 640
RETURN
M$ = ""
VTAB 20: HTAB 1: CALL -866
SW = 0
RETURN
END

510

560
127 THEN 560

The SPELLTALK program can be modified to say each word or message by
changing line 100 and then adding line 465. As shown, the / symbol indicates
that the word or message displayed is to be spoken. In line 465, if the
symbol selected is /, control is sent to line 600 and the word or message in

M$ is spoken. When entering line 100 be sure that there are three spaces
between each character:

100 S$(5) = "Y Z

465 IF C$ = "/" THEN
.

600

/II

The message displayed at the bottom of the screen is cleared by pressing

the C key. However, this can also be switch controlled by selecting a

keyboard character, other than one that is used to display a message,
modifying line 100, and then adding line 466. In this modification, the
asterisk "*" signifies that the message at the bottom of the screen is to be

cleared:

100 S$(5) = "Y Z . ? /

466 IF C$ = "*" THEN 640
665 IF C$ = "*" THEN 130

To decrease or increase the scan speed, decrease or increase the value

in the loop contained in line 520:

Or

520 FOR D = 1 TO 50 (faster scan speed)

95

C

520 FOR D = 1 TO 50 (slower scan speed)

Of course an INPUT statement can always be used to specify scan speed:

110 HOME
120 HTAB 15: PRINT "SPELLTALK"
121 VTAB 7
122 INPUT "SCAN SPEED (1=FAST, 9=SLOW): ";ST$
123 ST = VAL(ST$): IF ST = 0 THEN ST = 5
124 VTAB 4: CALL -958
520 FOR D = 1 TO 10*ST

For students who are visually impaired or simply to provide additional
auditory cues as each row letter is scanned, the following modification
presents each row letter via the Echo as it is scanned:

345 L$ = MID$(S$(VP),HP-8,1)
346 PRINT G$"T "L$" "G$"0"

Because matrix scanning requires two switch movements to select a

character, scan speed becomes an extremely important factor. The goal should
be to select a speed that allows the student sufficient time to select
characters, but a scan time that is not too slow in view of the student's
switch response speed. Regardless of the type of matrix scan program being
used, the students ability to use the matrix should be monitored in order
adjust the scan speed when necessary.

If the two switch task is not understood, or as a way to introduce the
complete letter matrix, the first two lines of the matrix can be displayed by

the following changes:

140 FOR D = 1 TO 2
230 VP = VP+1: IF VP > 2 THEN VP = 1

Using only the first two lines of the matrix, the student can be directed

to spell words such as DAD, BIG, HI, FACE, etc. An even simpler modification

is to present only the first line of the matrix and then spell words such as

BE, ADD,DAD, FACE, etc.

140 FOR D = 1 TO 1
230 VP = VP+1: IF VP > 1 THEN VP = 1

The above two modifications could also be enhanced by using frequently
occurring letters in the matrix rows being scanned. See the Letter Prediction
modification discussed below.

A sixth matrix line can be added if additional commands are necessary.
The SPELLTALK-2 program listing contains all of the above modifications and
a sixth matrix line. The first element of the last row can be used to insert

a space, and the second element of the row is used to erase the last letter

entered. The remaining row elements
punctuation that can be used.

provide additional symbols and

10 REM SPELLTALK-2
20 REM
30 PRINT CHR$(4);"BRUN TEXTALKER"
40 FOR L = 1 TO 1000: NEXT L
50 G$ = CHR$(5): PRINT G$"0"
60 S$(1) = "A B C D E F"

70 S$(2) = "G H I J K L"

80 S$(3) = "M N 0 P Q R"

90 S$(4) = "S T U V W X"

96

100 S$(5) = "Y Z *

105 S$(6) = " < I +"
110 HOME
120 HTAB 15: PRINT "SPELLTALK"
121 VTAB 7
122 INPUT "SCAN SPEED (1=FAST, 9=SLOW): ";ST$
123 ST = VAL(ST$): IF ST = 0 THEN ST = 5
124 VTAB 4: CALL -958
130 VP = 1
140 FOR D = 1 TO 6
150 VTAB VP+D*3: HTAB 9
160 PRINT S$(D): NEXT D
170 VTAB VP*3+1: HTAB 9
180 INVERSE: PRINT S$(VP): NORMAL
190 GOSUB 510
200 IF SW = 1 THEN SW = 0: GOTO 270
210 VTAB VP*3+1: HTAB 9
220 PRINT S$(VP)
230 VP = VP+1: IF VP > 6 THEN VP = 1
240 VTAB VP*3+1: HTAB 9
250 INVERSE: PRINT S$(VP): NORMAL
260 GOTO 190
270 VTAB VP*3+1: HTAB 9
280 PRINT S$(VP)
290 7TAB VP*3+1: HTAB 9
300 INVERSE
310 PRINT MID$(S$(VP),1,1)
320 NORMAL
330 HP = 9
340 GOSUB 510
350 VTAB VP*3+1: HTAB HP
360 PRINT MID$(S$(VP),HP-8,1)
370 IF SW = 1 THEN 460
380 HP = HP+4
390 IF HP > 29 THEN HP = 9
400 VTAB VP*3+1: HTAB HP
410 INVERSE
420 PRINT MID$(S$(VP),HP-8,1)
430 NORMAL
440 GOTO 340
450 SW = 1
460 C$ = MID$(S$(VP),HP-8,1)
461 IF C$ = "/" THEN 600
462 IF C$ = "*" THEN 640
463 IF C$ < > "<" THEN 470
464 IF LEN(M$) = 1 THEN M$ = "": GOTO 466
465 M$= LEFT$(M$, LEN(M$)-1)
466 VTAB 20: HTAB 1: CALL -868
467 GOTO 490
468 IF LEN(M$) = 1 THEN M$ = "": GOTO 490
469 M$ = LEFT$(M$,LEN(M$)-1): GOTO 490
470 MP = M$ + C$
480 PRINT G$ "T "C$" "G$"0"
490 VTAB 20: HTAB 1: PRINT M$
500 GOTO 130
510 IF PEEK(-16287) > 127 THEN 510
520 FOR D = 1 TO 10*ST
530 IF PEEK(-16287) > 127 THEN 560
540 KY = PEEK(-16384): IF KY > 127 THEN 560
550 NEXT D: SW = 0: RETURN
560 POKE -16368,0: SW = 1
570 IF KY = 155 THEN 680

97

580 IF KY = 212 THEN 600
590 GOTO 620
600 PRINT G$"T "M$" "G$"0"
610 GOTO 130
620 IF KY = 195 THEN 640
630 RETURN
640 M$ **

650 VTAB 20: HTAB 1: CALL -868
660 SW = C
665 IF C$ = "*" THEN 130
670 RETURN
680 END

Letter Prediction

The letters for the SPELLTALK programs can be arranged sequentially, in

a QWERTY or traditional keyboard manner, or by letter frequency. The
following changes result in words being scanned from the most to least
frequently appearing letters:

60 S$(1) = "E T A 0 I N"
70 8$(2) = "S H R D L C"
80 S$(3) = "U M W F G Y"
90 S$(4) = "P B V K J X"
100 S$(5) "() Z .

Language Boards

A 3X3 Language Board Matrix

The TALK and SPELLTALK program can be combined to produce a language

board. The 3X3 (three rows by three columns) language board shown below scans

a matrix comprised of three rows and three columns. Matrix element scanning
is sequential and occurs in the following order:

1 2 3

4 5 6

7 8 9

A screen overlay is used to signify what each matrix element represents.
When a particular matrix element is scanned, the Echo message corresponding

to that element is displayed.

Line 360 determines the vertical and horizontal screen position of each

cursor scan, and line 360 finds the Echo statement that corresponds to this

screen position. If the switch is engaged, the values of HX and VX which
correspond to H and V are found, and the contents of EMS(VX,HX) are presented

via the Echo (line 380).

The Echo entries corresponding to the matrix elements are contained in
DATA statements, beginning in line 490. The DATA entries can be words,
phrases, or a whatever alphanumeric string that is appropriate as long as the

string is no more than 255 characters.
10 REM TALKBOARD-3X3
20 REM
30 DIM EM$(6,6)
40 HOME
50 PRINT CHR$(4);"BRUN TEXTALKER"
60 for L = 1 TO 1000: NEXT L

98

70 G$=CHR$(5): PRINT G$"0"
80 HOME: HTAB 12
90 PRINT "TALKBOARD-3X3"
100 FOR K = 1 TO 8: E$ = E$ + CHR$(32): NEXT K
110 FOR K = 1 TO 21: READ A
120 POKE 801+K,A: NEXT K
130 DATA 174,32,3,173,48,192,136,208,5,206,

33,3,240,6,202,208,245,76,34,3,96
140 VTAB 8
150 INPUT "SCAN SPEED (1=FAST TO 9=SLOW): ";ST$
160 ST = VAL(ST$): IF ST < 1 THEN ST = 5
170 FOR J = 1 TO 3
180 FOR K = 1 TO 3
190 READ EM$(J,K)
200 NEXT K: NEXT J
210 V = 1: H = 1
220 HOME
230 INVERSE
240 FOR K = 0 TO 6
250 VTAB V+K: HTAB H
260 PRINT E$: NEXT K: NORMAL
270 IF PEEK(-16287) > 127 THEN 270
280 POKE 800,150: COKE 801,100: CALL 802
290 FOR D = 1 TO ST*10
300 IF PEEK(-16287) > 127 THEN 340
310 KY = PEEK(-16384): IF KY > 127 THEN 350
320 NEXT D
330 H = H+15: IF H > 31 THEN H = 1: V = V+7:

IF V > 15 THEN V = 1
340 GOTO 210
350 POKE -16368,0
360 HX = (H-1)/15+1: VX = (V-1)/7+1
370 VTAB 21: HTAB 1
380 PRINT G$"T "EM$(VX,HX)" "G$"0"
390 VTAB 23: HTAB 5
400 PRINT "(PRESS KEY OR SWITCH TO CONTINUE)"
410 IF PEEK(-16287) > 127 THEN 410
420 IF PEEK(-16287) > 127 THEN 210
430 KY = PEEK(-16384): IF KY > 127 THEN 450
440 GOTO 420
450 POKE -16368,0
460 IF KY = 155 THEN 480
470 GOTO 210
480 END
490 DATA HELLO!
500 DATA I AM HUNGRY.
510 DATA I AM THIRSTY.
520 DATA I LIKE THAT.
530 DATA I DON'T UNDERSTAND.
540 DATA YES
550 DATA NO
560 DATA CAN I WATCH TV?
570 DATA WILL YOU READ TO ME?

By saving the program using different file names, a great many useful
language experience boards can be created. For example, the 3X3 board can be
used with an overlay comprised of 9 different colors and having the student
select the appropriate matrix element in response to a verbal prompt (e.g.,

"Which is blue?"). Or a board can be created that displays eating utensils,
pictures of friends and family members, activities, etc.

99

C

4X4 Language Board Matrix

The language board can be expanded to a 4X4 matrix by making these
modifications:

10 REM TALKBOARD-4X4
90 PRINT "TALKBOARD-4X4"
100 FOR K = 1 TO 6: E$ = E$ + CHR$(32): NEXT K
170 FOR J = 1 TO 4
180 FOR K = 1 TO 4
240 FOR K = 0 TO 4
330 H = H+11: IF H > 34 THEN H = 1: V = V+5:

IF V > 16 THEN V = 1
360 HX = (H-1)/11+1: VX = (V-1)/5+1
490 DATA HELLO!
500 DATA I AM HUNGRY.
510 DATA I AM THIRSTY.
520 DATA I LIKE THAT.
530 DATA I DON'T UNDERSTAND.
540 DATA YES
550 DATA NO
560 DATA CAN I WATCH TV?
570 DATA WILL YOU READ TO ME?
580 DATA WHAT TIME IS IT?
590 DATA I'M TIRED.
600 DATA THAT IS CORRECT.
610 DATA THAT IS NOT CORRECT.
620 DATA MY NAME IS FRED.
630 DATA WHAT IS THAT?
640 DATA THAT'S FUNNY!

A 5X5 Language Board Matrix

Before using the following 5X5 matrix, be sure to add 25 DATA statements
to replace the TALKBOARD-5X5 file, beginning in line 490.

10 REM TALKBOARD-5X5
90 PRINT "TALKBOARD-5X5"
100 FOR K = 1 TO 6: E$ = E$ + CHR$(32): NEXT K
170 FOR J = 1 TO 5
180 FOR K = 1 TO 5
240 FOR K = 0 TO 3
330 H = H+8: IF H > 32 THEN H = 1: V = V+4:

IF V > 20 THEN V = 1

360 HX = (H-1)/8+1: VX = (V-1)/4+1
490 DATA A

730 DATA Y

2X2 Language Board 'Matrix

Because of the need to develop flexible language systems, there is a
tendency to create talkboards that are too complex for the individual's

language system. The following two modifications illustrate how the program
described above can be reduced to a 2X2 language matrix or to a simple binary
language task. For the binary task, an overlay is used to depict two items.

When the switch is activated, the Echo presents the label/message
corresponding to the overlay component:

100

I 01

Because the words presented by the Echo are not displayed on screen, the
DATA statement entries can be entered phonetically. In the case of the word
SECOND (see line 500 in the below listing), the spelling SECUND provides a
better Echo pronunciation.

The screen is divided into four quadrants and each quadrant is scanned
until the switch is engaged. Each quadrant corresponds to a DATA statement
entry, beginning in line 490. The DATA statement entries can be either a
single words or phrases. Although strings can be up to 255 alphanumeric
characters in length, simple Echo entries are most appropriate for a
simplified 2X2 language board screen display

10 REM TALKBOARD-2X2
90 PRINT "TALKBOARD-2X2"
100 FOR K = 1 TO 18: E$ = E$+CHR$(32): NEXT K
170 FOR J = 1 TO 2
180 FOR K = 1 TO 2
240 FOR K = 0 TO 8
330 H = H+20: I H > 21 THEN H = 1:

V = V+12: IF V > 13 THEN V = 1
360 HX = (H-1)/20+1: VX = (V-1)/12+1
490 DATA FIRST
500 DATA SECUND
510 DATA THIRD
520 DATA FOURTH

Touchwindow Matrix Input

All of the language boards discussed in this section can be modified for

use with a Touchwindow. However, small matrix entries can result in a task
that requires considerable motor skills. Because of this, the 2X2 matrix, and
the binary language board discussed below, provide the best opportunity for
using Touchwindow input with a language board.

To use a Touchwindow with a 2X2 matrix, change line 300 which reads the
input, and then add lines 360, 361 and 362 to set the coordinates VX and HX
to correspond to the Touchwindow input:

300 IF PDL(0) > 10 OR PDL(1) > 10 THEN 350
360 VX=1: HX=1
361 IF PDL(0) > 125 THEN HX = 2
362 IF PDL(1) > 125 THEN VX = 2

Binary Language Board

This represents the simplest language boari scheme. The screen is
divided into two halves. A two item overlay is used, and each overlay
component has a corresponding Echo entry. This format can be used to teach
the language board concept. For example, the overlay might contain a picture
of the student and another person in the room. When the switch is engaged,
either the name of the student or the other person is presented via the Echo.

10 REM TALKBOARD-BINARY
90 PRINT "TALKBOARD-BINARY"
100 FOR K = 1 TO 15: E$ = E$+CHR$(32): NEXT K
170 FOR J = 1 TO 1
180 FOR K = 1 TO 2
240 FOR K = 2 TO 19
330 H = H+20: IF H > 22 THEN H = 1
360 HX = (H-2)/20+1: VX = 1

101

11'2

490 DATA FIRST
500 DATA SECUND

To use the Touchwindow routine with the binary language board discussed
below, VX in line 360 would be set to 1.

300 IF PDL(1) > 10 THEN 350
360 VX = 1: HX = 1
361 IF PDL(0) > 125 THEN HX = 2

Talkboard Graphics

Instead of using a null string to display each scan block, the display
can be in graphics mode. However, when using ordinary low-resolution graphics
the display tends to be somewhat slow and the result is not as crisp as the

above procedure. This problem can be circumvented by using a machine
language routine, but there is a corresponding increase in the program
complexity and a decrease in programming flexibility.

The following modifications illustrates how the TALKBOARD-2X2 program is

modified to use simple low-resolution graphics. The primary advantage of this
program is the ability to modify the scan color in line 226; while the
disadvantage is the somewhat slow scan display without resorting to a machine

language routine.

10 REM TALKBOARD-GRAPHICS
90 PRINT "TALKBOARD-GRAPHICS"
100
225 GR
226 COLOR=2
240 FOR K = 4 TO 15
250 VLIN 4+V,15+V AT K+H
260 NEXT K
330 H = H+.(IF H > 21 THEN H = 1:

V = V+20. TF V > 21 THEN V = 1

360 HX = (H-1)/20+1: VX = (V-1)/20+1

Machine Language Graphics

The advantage of a machine language routine to produce a scan is speed.

If at all possible, an almost instantaneous screen scan is desirable.
Unfortunately, the advantages of added program speed through machine language
programming also limits the ease of making changes in the BASIC code.

The following program illustrates how a machine language subroutine is

used to draw in low-resolution graphics. This program might be of interest
to those requiring added program speed or with an interest in advanced

programming applications. The TALKBOARD-MG program also contains a component
(described above) to automatically reconnect the Echo after the program has

been run and the interrupted. Line 160 contains the machine language code for

producing sound; and line 190 contains the machine language code for

generating the screen cursor used to highlight language board entries.

10 REM TALKBOARD-MG
20 REM
30 DIM EM$(6,6)
40 HOME
50 IF PEEK(1000) = 99 THEN 90
60 PRINT CHRS(4);"BRUN TEXTALKER"
60 for L = 1 TO 1000: NEXT L

102

103

70 POKE 1000,99
80 GOTO 100
90 PRINT CHR$(4):"PR#0"
100 FOR L = 1 TO 1000: NEXT L
110 G$=CHR$(5): PRINT G$"0"
120 HOME: HTAB 8
130 PRINT "TALKBOARD-MACHINE GRAPHICS"
140 FOR K = 1 TO 21: READ A
150 POKE 801+K,A: NEXT K
160 DATA 174,32,3,173,48,192,136,208,5,206,

33,3,240,6,202,208,245,76,34,3,96
170 FOR K = 1 TO 17: READ X
180 POKE 900+K,X: NEXT K
190 DATA 160,0,169,32,133,45,169,20,32,40,248,

200,192,20,208,242,96
200 VTAB 8
210 INPUT "SCAN SPEED (1=FAST TO 9=SLOW): ";ST$
220 ST = VAL(ST$): IF ST < 1 THEN ST = 5
230 FOR J = 1 TO 1
240 FOR K = 1 TO 3
250 READ EM$(J,K)
260 NEXT K: NEXT J
270 RS = 2: RE = 37
280 CS = 2
290 GR: HOME
300 COLOR=15
310 GOSUB 330
320 GOTO 370
330 POKE 908,RS: POKE 904,RE
340 POKE 902,CS: POKE 914,CS+1
350 CALL 901
360 RETURN
370 IF PEEK(-16287) > 127 THEN 370
380 POKE 800,150: POKE 801,100: CALL 802
390 FOR D = 1 TO ST*10
400 IF PEEK(-16287) > 127 THEN 480
410 KY = PEEK(-16384): IF KY > 127 THEN 480
420 NEXT D
430 COLOR =O
440 GOSUB 330
450 CS = CS 18: IF CS > 21 THEN CS = 2
460 FOR L'= 1 TO 1000: NEXT L
470 GOTO 300
480 POKE -16368,0
490 HX = (CS-2)/18+1: VX = 1
500 VTAB 21: HTAB 1
510 PRINT G$"T "EM$(VX,HX)" "G$"0"
520 VTAB 23: HTAB 5
530 PRINT "(PRESS KEY OR SWITCH TO CONTINUE)"
540 IF PEEK(-16287) > 127 THEN 540
550 IF PEEK(-16287) > 127 THEN 270
560 KY = PEEK(-16384): IF KY > 127 THEN 580
570 GOTO 550
580 POKE -16368,0
590 IF KY = 155 THEN 610
600 GOTO 270
610 TEXT: HOME
620 END
630 DATA GLASS
640 DATA HOUSE

In line 270, RS signifies the beginning screen row (a value between 0 and

103

39) and RE the ending screen row. The value RE must be equal to or greater
than RS. The value CS signifies the beginning column row. The machine
language subroutine is called in line 350. For those interested in advanced
programming, or just to see what machine language code looks line, enter CALL
-151 to access the Apple monitor which runs machine language programs. Next,

enter 385L after the asterisk to list the machine language subroutine:

CALL -151
*385L

use Control+Reset or FP to exit the monitor.

by:

The machine language subroutine used to produce the sound can be listed

CALL -151
*322L

Probability Language Sequencing

A modification which is appropriate for every type of language board
activity, especially when sequential matrix element scanning is used, is to
order the language concepts in terms of usage (also see the Letter Prediction
modification used with the SPELLTALK-2 program). Initially, the language
concepts comprising the matrix can be entered based on previous experience or
a "best guess" estimate. With experience, and based on actual usage, language
concepts can be arranged in the matrix based on the probability of being
selected.

Expressive Language Board Applications

Single switch reading applications are discussed extensively in Chapter

8. The following applications are presented because of the use of matrix
scanning and Echo output.

Row/Element Matrix Scanning

The READTALK program uses a 5X5 matrix scan procedure to select from up

to 25 different Echo responses. If the matrix element MUSIC is selected, the
Echo produces I WANT TO LISTEN TO MUSIC; and if the ? is selected, the Echo

produces I DON'T UNDERSTAND.

Unlike the 5X5 language board matrix described above, READTALK uses a
row/element scanning procedure. Each row is scanned in sequential order such
that the entire row is highlighted. When the switch is engaged, each row
element of the designated row is scanned in sequential order. When the switch
is engaged a second time, the highlighted row element becomes the selected

matrix entry.

10 REM READTALK
20 REM
30 DIM M$(6,6),EM$(6,6)
40 ST = 5
50 PRINT CHR$(4);"BRUN TEXTALKER"
60 G$= CHR$(5): PRINT G$"0"
70 FOR L = 1 TO 40: E$ = E$ + CHR$.(32): NEXT K
80 FOR K = 1 TO 40: H$ = H$ + "-": NEXT K
90 FOR J = 1 TO 5

104

I

100 FOR K = 1 TO 5
110 READ M$(J,K),EM$(J,K)
120 LT = 7: IF K = 5 THEN LT = 9
130 S$(J) = S$(J) + LEFT$(M$(J,K) + E$,LT)
140 NEXT K: NEXT J
150 HOME: HTAB 16: PRINT "READTALK"
160 VTAB 2: HTAB 1: PRINT H$
170 VTAB 19: HTAB 1: PRINT H$
180 FOR D = 1 TO 5
190 VTAB 1+D*3: HTAB 1
200 PRINT S$(D): NEXT D
210 VP = 1
220 VTAB VP*3+1: HTAB 1
230 INVERSE: PRINT S$(VP): NORMAL
240 GOSUB 530
250 IF SW = 1 THEN SW = 0: GOTO 320
260 VTAB VP*3+1: HTAB 1
270 PRINT S$(VP)
280 VP = VP+1: IF VP > 5 THEN VP = 1
290 VTAB VP*3+1: HTAB 1
300 INVERSE: PRINT S$(VP): NORMAL
310 GOTO 240
320 VTAB VP*3+1: HTAB 1
330 PRINT S$(VP)
340 VTAB VP*3+1: HTAB 1
350 INVERSE: PRIN'.° 20(VP,1): NORMAL
360 HP = 1
370 GOSUB 530
380 VTAB VP*3+1: HTAB HP*7-6
390 PRINT M$(VP,HP)
400 IF SW = 1 THEN 460
410 HP = HP+1: IF HP > 5 THEN HP = 1
420 VTAB V2*3+2: HTAB HP*7-6: PRINT
430 VTAB VP*3+1: HTAB HP*7-6
440 INVERSE: PRINT M$(VP,HP): NORMAL
450 GOTO 370
460 SW = 1
470 VTAB 21: HTAB 1: CALL -868
480 VTAB 21: HTAB 3: PRINT EM$(VP,HP)
490 PRINT G$"T "EM$(VP,HP)" "G$"0"
500 FOR L = 1 TO 1500: NEXT L
510 VTAB 21: CALL -958
520 GOTO 210
530 FOR D = 1 TO ST*10
540 IF PEEK(-16287) > 127 THEN 570
550 KY * PEEK(-16384): IF KY > 127 THEN 570
560 NEXT D: SW = 0: RETURN
570 POKE -16368,0: SW = 1
580 FOR L = 1 TO 500: NEXT L
590 IF KY = 155 THEN 610
600 RETURN
610 END
620 REM
630 REM DATA STATEMENTS
640 REM
650 DATA YES,YES
660 DATA NO,NO
670 DATA HI, HELLO! HOW ARE YOU?
680 DATA SORRY, I'M SORRY.
690 DATA GOODBYE,GOODBYE
700 DATA DRINK, I'M THIRSTY.
710 DATA FOOD, I'M HUNGRY.

105

720 DATA SNACK, CAN I HAVE A SNACK?
730 DATA TIRED, I'M TIRED.
740 DATA BATHROOM, I NEED TO USE THE BATHROOM.
750 DATA TV, CAN I WATCH TV?
760 DATA RADIO, CAN I LISTEN TO THE RADIO?
770 DATA MUSIC, I WANT TO LISTEN TO MUSIC.
780 DATA PLAY, I WANT TO PLAY.
790 DATA NINTENDO, CAN I PLAY NINTENDO?
800 DATA HELP, I NEED HELP?
810 DATA STOP, "STOP, PLEASE!"
620 DATA OUCH!, SOMETHING HURTS!
830 DATA BORED, I'M BORED.
840 DATA CAN'T, I CAN'T DO IT.
850 DATA EXCUSE, "EXCUSE ME, PLEASE."
860 DATA THANKS, THANK YOU!
870 DATA FUNNY, THAT IS VERY FUNNY.
880 DATA ?, I DON'T UNDERSTAND.
890 DATA I, THAT'S GREAT!

The above program should be individualized so that the words/statements
best meet specific student learning needs. Because of this, it might be
easier to specify the scan speed in the program (e.g., line 40) rather than
entering the speed each time the program is run. If this is not the case,
enter a scan speed input routine as shown in one of the TALKBOARD programs.

The matrix elements for READTALK are contained in DATA statements
beginning in line 650. For each DATA statement, the first entry is the matrix
element displayed on screen and the second entry is the corresponding
statement presented via the Echo. For example, line 890 can be changed as
follows:

890 DATA WOW, THAT'S TERRIFIC!

Expressive Language Boards

The READTALK program can be modified to present a series of frequently
used words so as to create an expressive language activity entailing word
selection and syntax. The WORDTALK program listed below is definitely limited
with respect to the number of words and the length of each word that can be
used. However, the program can be used to provide a great many different
expressive language activities, and an individual who can successfully use
this program will have demonstrated readiness for a more comprehensive
expressive language board system.

The entries for the first four elements of each row cannot exceed seven
characters, while the last entry of each row can be up to nine characters in

length. Lines 120 and 130 insure that these limits are not exceeded.

10 REM WORDTALK
20 REM
30 DIM M$(6,6),EM$(6,6)
40 ST = 3
50 PRINT CHR$(4);"BRUN TEXTALKER"
60 G$ = CHR$(5): PRINT G$"0"
70 FOR K = 1 TO 40: E$ = E$ + CHR$(32): NEXT K
80 FOR K = 1 TO 40: H$ = H$ + "-": NEXT K
90 FOR J = 1 TO 5
100 FOR K = 1 TO 5
110 READ M$(J,K): M$(J,K) = M$(J,K)
120 LT = 7: IF K = 5 THEN LT = 9
130 S$(J) = S$(J) + LEFT$(M$(J,K) + E$,LT)

106

140 NEXT K: NEXT J
150 HOME: HTAB 16: PRINT "WORDTALK"
160 VTAB 2: HTAB 1: PRINT H$
170 VTAB 19: HTAB 1: PRINT H$
180 FOR D = 1 TO 5
190 VTAB 1+D*3: HTAB 1
200 PRINT S$(D): NEXT D
210 VP = 1
220 VTAB VP*3+1: HTAB 1
230 INVERSE: PRINT S$(VP): NORMAL
240 GOSUB 580
250 IF SW = 1 THEN SW = 0: GOTO 320
260 VTAB VP*3+1: HTAB 1
270 PRINT S$(VP)
280 VP = VP+1: IF VP > 5 THEN VP = 1
290 VTAB VP*3+1: HTAB 1
300 INVERSE: PRINT S$(VP): NORMAL
310 GOTO 240
320 VTAB VP*3+1: HTAB 1
330 PRINT S$(VP)
340 VTAB VP*3+1: HTAB 1
350 INVERSE: PRINT M$(VP,1): NORMAL
360 HP = 1
370 GOSUB 580
380 VTAB VP*3+1: HTAB HP*7-6
390 PRINT M$(VP,HP)
400 IF SW = 1 THEN 460
410 HP = HP+1: IF HP > 5 THEN HP = 1
420 VTAB VP*3+2: HTAB HP*7-6: PRINT
430 VTAB VP*3+1: HTAB HP*7-6
440 INVERSE: PRINT M$(VP,HP): NORMAL
450 GOTO 370
460 SW = 1
470 W$ = EM$(VP,HP)
180 IF W$ = "*CLEAR" THEN M$ = "": GOTO 540
490 IF W$ < > "*TALK" THEN 530
500 VTAB 21: HTAB 1
510 PRINT G$"T "M$" "G$"0"
r.20 GOTO 210
530 M$ = M$+W$+" "
540 VTAB 21: HTAB 1: CALL -868
550 VTAB 21: HTAB 1: PRINT M$
560 FOR L = 1 TO 1500: NEXT L
570 GOTO 210
580 FOR D = 1 TO ST*10
590 IF PEEK(-16287) > 127 THEN 620
600 KY = PEEK(-16384): IF KY > 127 THEN 620
610 NEXT D: SW = 0: RETURN
620 POKE -16368,0: SW = 1
630 FOR L = 1 TO 500: NEXT L
640 IF KY = 155 THEN 660
650 RETURN
660 END
670 REM
680 REM DATA STATEMENTS
690 REM
700 DATA I,WAS,IS,HE,THAT
710 DATA RIGHT,WRONG,WHAT,THIS,HUNGRY
720 DATA HE,SHE,FUNNY,AM,PLAYING
730 DATA TO,PLAY,READ,SCHOOL,HWE
740 DATA A,TV,GAME,*TALK,*CLEAR

107

The last two matrix entries (see line 740) are used to present the
commands used to initiate Echo speech (*TALK), and to clear the screen
(*CLEAR). When either of these instructions are encountered (lines 480 and
490), the Echo is activated or the screen is cleared. The DATA statements
beginning in line 700 can be changed to present words from a story, specific
content words, or language structures (e.g., the use of adjectives;.

The message produced by WORDTALK is presented via the echo by selecting
*TALK in row five. To present each word through the Echo each time a matrix
element is selected, add line 545:

545 PRINT G$ "T "W$" "G$ "O"

Inverse Lowercase

The Apple does not have an inverse mode for lower-case characters.
However, if an 80-column card is installed in the Apple being used, activate
the card and then set the display to 40-columns. Because the 80-Column Text
Card does have an inverse mode for lower-case characters, lower-case
characters in inverse moue will look like real words and not a message form

Mars.

45 PRINT CHR$(4);"PR#3"
46 PRINT CHR$(17)

Note: For Apple II+ users, lowercase characters appear as meaningless
when displayed on screen. For example, the word yes appears as 9%3. If an
80-column card is installed, the card can certainly make lowercase characters

meaningful. However, consult the manual for the 80-column card being used for

necessary instructions to display characters and clear the screen.

80-Column Text Card Display

Most single switch applications are best suited for the usual 40-column

screen display. However, for older students, adults, and for students able

to use a small typeset, an 80-column display can be an important enhancement.

The 80-Column card is inserted in slot #3 so the program is modified to
first activate the card by adding line 45. Many of the changes are minor such
as changing the HTAB setting from 1 to 2. The major change entails the use
of the HTAB when going beyond 40 columns in that HTAB doesn't work beyond this

point. To tab columns 41 to 81, a POKE must be used (see line 380). The
CHR$(17) in line 660 is equivalent to Control-Q and is used to exit. Check
with your 80-column card manual for the necessary command to exit the 80-
column format.

45 PRINT CHR$(4);"PR#3"
70 FOR K = 1 TO 80: E$ = E$ + CHR$(32): NEXT K
80 FOR K = 1 TO 80: H$ = H$ + "-": NEXT K
90 FOR J = 1 TO 5
120 LT = 14: IF K = 5 THEN LT = 18
150 HOME: HTAB 32: PRINT "WORDTALK"
190 VTAB 1+D*3: HTAB 2
220 VTAB VP*3+1: HTAB 2
260 VTAB VP *3 +i: HTAB 2
290 VTAB VP*3+1: HTAB 2
32G VTAB VP*3+1: HTAB 2
340 VTAB VP*3+1: HTAB 2
380 VTAB VP*3+1: POKE 36,HP*14-13
420 VTAB VP*3+2: POKE 36,HP*14-13: PRINT

108

1

430 VTAB VP*3+1: POKE 36,HP*14-13
660 PRINT CHR$(17)
665 VTAB 23
666 END

Echo Applications

Public Domain Software

By using several BASIC statements, an Echo speech synthesizer can be
added to many public domain software programs. To use an Echo with public
domain programs, first add the Echo software to the disk containing the
programs being used. The following are the two required DOS 3.3 CATALOG
entries:

*B 006 TEXTALKER
*B 050 TT.OBJ

The two Echo binary programs can also be saved on a second disk by first
loading each program, determining the starting memory address and program
length, and then saving each program. Although there are several ways to copy
files, the technique described below can be useful in order to copy a binary
program on a second disk without booting up a copy of system master disk.

(Insert disk containing TEXTALKER program)

BLOAD TEXTALKER
PRINT PEEK(43634) + PEEK(43635) * 256
37632
PRINT PEEK(43616) + PEEK(43617) * 256
528

(starting address)

(file length)

(Insert the application disk which will be using the Echo and save
program)

BSAVE TEXTALKER, A37632, L528

(Insert disk containing TT.OBJ program)

BLOAD TT.OBJ
PRINT PEEK(43634) + PEEK(43635) * 256
8192
PRINT PEEK(43616) + PEEK(43617) * 256
11956

(starting address)

(file length)

(Insert the application disk which will be using the Echo and save
program)

BSAVE TT.OBJ, A8192, L11956

To demonstrate how to use the Echo with other software programs, load the

TEST program from disk. The easiest way to use the Echo is to load the
TEXTALKER software into memory by running the program entitled TEXTALKER. The
TEXTALKER program, in turn, runs the TEXTALKER.OBJECT or TT.OBJ program.

BRUN TEXTALKER

Press the RETURN key and the Echo should respond with "READY." Now enter

RUN. For each number displayed on screen, the Echo pronounces the number.

109

The TEXTALKER can be loaded directly from the program by adding line 25:

25 PRINT CHR$(4);"BRUN TEXTALKER"

Echo Turnkey Systems

A turnkey system is one in which all that is needed is to "turn the key"

and the program is up and running. A turnkey system can be created by using
one of the disk utility programs previously discussed or by saving the program
in question as the HELLO or greeting program. To create a turnkey system with
the TALKBOARD program, first boot the system. Now load the TALKBOARD program
into memory. Next, insert a blank disk and initialize the disk with the
TALKBOARD program as the HELLO or greeting program:

LOAD TALKBOARD

(insert a blank disk)

INIT HELLO

Because TALKBOARD was in memory when the disk was initialized, this
program now runs when the disk is booted. A second method for installing a
program as the greeting program is to load boot a formatted disk, load the
program, and then save the designated program using the greeting program name
(which is usually HELLO):

LOAD TALKBOARD
SAVE HELLO

Of course, when using the second method, the TALKBOARD program will
always run as soon as the disk is booted, even though there might be other
programs of interest on the disk.

Single Switch Morse Code

The ability to use Morse Code requires not only the ability to

conceptualize the relationship between a series of dots, dashes and letters,

as well as a degree of reading proficiency, but also the physical ability to
use a switch to enter the necessary dots and dashes. The following program
is provided to illustrate one of many techniques that can be used to enter
keyboard characters via single switch Morse Code.

When the program is up and running, experiment with different scan speeds

(begin with a setting of 7). The scan speed for this program refers to the
amount of time that is allowed in order to specify either a dot or dash.
Holding the switch in a closed position for a short period of time results in
a dot, while holding the key for a longer period results in a dash.

The following is a list of the codes used in the program:

A = . -
B = - . . .
C = . -
D = -
E = .

110

F =
G =
H =
I =
J =

= .-L = -
M =
N =
0 = - --
P = - -.

= - -.-
R =
S =
T =
U = ..-
V=-
W = .

X = ..-
Y =
Z =

In addition to the above .-.-.- signals the end of a message. A space

is inserted between words by engaging the switch until the space character

appears.

10 REM MORSE CODE
20 REM
30 DIM L$(26)
40 FOR K = 1 TO 26
50 READ 14(K): NEXT K
60 DATA .-,-...,-.-,-.. .-
70 DATA . .-.,--.,....,.
80 DATA -.-,.-..,--.-.,
90 DATA . -- -, - . a. -

100 DATA ..-, -

110 EM$ = ".-.-.-"
120 EX$ = ".
130 HOME
140 VTAB 2: HTAB 15
150 PRINT "MORSE CODE"
160 VTAB 7
170 INPUT "SCAN SPEED (1=FAST, 9=SLOW): ";ST$
180 ST = VAL(ST$): IF ST < 1 THEN ST = 4
190 VTAB 2: CALL -958
200 CC = .3*ST*20
210 VTAB 8: HTAB 6: PRINT ">"
220 IF PEEK(-16287) > 127 THEN 220
230 FOR D = 1 TO ST*50
240 IF PEEK(-16287) > 127 THEN 270

111

250 NEXT D
260 GOTO 360
270 FOR D = 1 TO ST*20
280 IF PEEK(-16287) < 128 THEN 320
290 NEXT D
300 M$ = M$ + CHR$(255)
310 GOTO 420
320 IF D > CC THEN L$ = L$+"-": GOTO 340
330 L$ = L$+"."
340 VTAB 8: HTAB 10: PRINT L$
350 GOTO 220
360 VTAB 8: HTAB 6: PRINT " "

370 IF L$ = EX$ THEN 490
380 IF L$ = EM$ THEN 460
390 FOR K = 1 TO 26: IF L$ = L$(K) THEN 410
400 NEXT K: GOTO 430
410 M$ = M$+CHR$(64+K)
420 VTAB 12: HTAB 1: PRINT MS
430 L$ = ""
440 VTAB 8: HTAB 1: CALL -868
450 GOTO 210
460 HOME
470 GOTO 130
480 VTAB 23
490 END

The letters corresponding to each code pattern are determined in line
390 When the pattern contained in L$ is equal to the pattern in L$(K), the
variable K signifies the position of the letter in the alphabet. Thus, if the

pattern is -- (or N), variable K is set to 14 signifying the 14th letter of

the alphabet. The CHR$ value of the letter N is 78 so that CHR$(64+K)
generates the letter N in lines 410 and 415.

Talking Morse Code

The MORSE CODE program is easily modified for use with an Echo to
pronounce each letter as well as the message generated. If the end-of-message
signal is given, the Echo presents the entire message contained in MS.

35 PRINT CHR$(4);"BRUN TEXTALKER"
36 G$ = CHR$(5)
37 PRINT G$"0"
38 FOR L = 1 TO 1000: NEXT L
305 PRINT G$"T "M$" "G$"0"
415 PRINT G$"T "CRR$(64+R)" "G$"0"
465 PRINT G$ "T "M$" "G$"0"
466 FOR L = 1 TO 1000: NEXT L

Echo Cause/Effect Enhancements

The Echo can be used with virtually every type of program to provide

useful and motivating feedback. The SWITCH/SCREEN CONNECT program is intended
to develop a better understanding of the relationship between engaging a
switch and the subsequent screen event. When the below program is run, the
Echo is used to prompt the user to engage the switch when the scan cursor is
within the low-resolution square displayed on screen. After the switch is
engaged, low-resolution graphics, the Apple built-in sound, and the Echo are
all used to provide feedback.

10 REM SWITCH/SCREEN CONNECT

112

20 REM
30 N$ = "FRED"
40 PM$ = "PRESS THE SWITCH"
50 FD = 8
60 D$ = CHR$(4): G$ = CHR$(5)
70 FOR K 1 TO FD
80 READ FD$(K): NEXT K
90 DATA GREAT,VERY GOOD,NICE,NICE GOING,NICE WORK,

EXCELLENT ,WELL -DONE, GOOD RESPONSE
100 FOR K=1 TO 21
110 READ A
120 POKE 801+K,A
130 NEXT K
140 DATA 174,32,3,173,48,192,136,208,5,206,33,3,

240,6,202,208,245,76,34,3,96
150 GOTO 340
160 POKE 800,101
170 POKE 801,48
180 CALL 802
190 POFE 800,76
200 POK:7. 801,48
210 CALL 802
220 POKE 800,60
230 POKE 801,48
240 CALL 802
250 POKE 800,52
260 POKE 801,96
270 CALL 802
280 POKE 800,60
290 POKE 801,48
300 CALL 802
310 POKE 800,52
320 POKE 801,255
330 CALL 802
340 RETURN
350 PRINT CHR$(4);"BRUN TEXTALKER"
360 PRINT G$;"0"
370 HOME: VTAB 2: HTAB 10
380 PRINT "KEY/SCREEN CONNECTION"
390 VTAB 5: HTAB 1
400 INPUT "SCAN SPEED: (1=FAST TO 9=SLOW)? ";S$
410 SP = VAL(S$)
420 IF SP < 1 OR SP > 9 THEN 350
430 PRINT
440 INPUT "NUMBER OF ITEMS? ";NX$
450 N = VAL(NX$)
460 IF N < 1 THEN 410
470 FOR K = 1 TO N
480 GR: HOME
490 RC = INT(RND(1)*15+1)
500 FOR L = 1 TO 1200: NEXT L
510 R = 0: COLOR=RC
520 IF PEEK(-16287) > 127 THEN 500
530 FOR K = 20 TO 38
540 HUN 12,26 AT K
550 NEXT K
560 FOR K = 0 TO 12
570 POKE 800,150-K*6
580 POKE 801,150
590 CALL 802
600 COLOR=15
610 HLIN K*3,K*3+2 AT 29

113

620 HLIN K*3,K*3+2 AT 30
630 IF K < 4 OR K > 8 THEN 630
640 PRINT G$"T "PM$" "N$" "G$"0"
650 FOR L = 1 TO SP*10
660 KY = PEEK(-16384): IF KY > 127 THEN 670
670 IF PEEK(-16287) > 127 THEN 670
680 NEXT L: GOTO 690
690 POKE -16368,0: R = 1
700 COLOR=0
710 IF K > 3 AND K < 9 THEN COLOR=RC
720 HLIN K*3,K*3+2 AT 29
730 HLIN K*3,K*3+2 AT 30
740 IF R = 0 THEN 750
750 IF K > 3 AND K < 9 THEN 760
760 GOTO 1190
770 NEXT K: GOTO 1190
780 GOSUB 150
790 R = INT(RND(1)*FD+1)
800 PRINT G$"T "FD$(R)" "N$" "G$"0"
810 FOR K = 1 TO 15
820 COLOR=0
830 HLIN 12,26 AT 39-K
810 COLOR=RC
850 HLIN 12,26 AT 20-K
860 FOR J = 12 TO 15
870 POKE 800,200-K*10-J
880 POKE 801,5
890 CALL 802
900 NEXT J
910 NEXT K
920 FOR K = 1 TO 12
930 COLOR=0
940 VLIN 5,23 AT 11+K
950 COLOR=9
960 VLIN 5,23 AT 26+K
970 POKE 800,100-K*6
980 POKE 801,2
990 CALL 802
1000 FOR L = 1 TO 100: NEXT L
1010 NEXT K
1020 GOSUB 150
1030 FOR L = 1 TO 2000: NEXT L
1040 IF KY = 155 THEN 1060
1050 NEXT X
1060 FOR L = 1 TO 3000: NEXT L
1070 IF PEEK(-16287) > 127 THEN 1050
1080 TEXT: HOME
1090 VTAB 20: HTAB 3
1100 PRINT "(Press Return for More or Q to Quit)";
1110 POKE -16368,0: GET R$
1120 IF R$ = "Q" OR R$ = "q" THEN 1120
1130 GOTO 350
1140 END

To enter a student's name, N$ is set to the name in line 30. The prompt
to press the switch and presented via the Echo is determined by variable PM$

in line 40. After each switch response, the Echo randomly selects one of

eight statements (e.g., GREAT). These statements can be changed by modifying
the DATA statement entries in line 80. If the statement in line 80 is

modified, be sure that the variable FD in line 50 corresponds to the number
of statements contained in the DATA statement.

114

0

In line 640, the space between PM$ (the prompt defined in line 40) and

the N$ (the student's name) is needed so that the Echo treats each as a
separate word.

640 PRINT G$"T "PM$" "N$" "G$"0"

Additional Echo statements could be used before the cursor reaches the target
area (e.g., WAIT),. or to provide additional feedback following a correct
response.

Changing Echo Speech Characteristics

Several techniques have already been discussed to show how
characteristics of Echo speech (e.g., volume, pitch) can be controlled by

means of Echo commands. The following illustrates how the volume and pitch
can be changed in SWITCH/SCREEN CONNECT program by adding lines 355 and 356.
Rather than re- running the TEXTALKER program after these additions have been
made, line 350 was changed so that the Echo is re-connected. However, before
line 350 is modified or used, the TEXTALKER program must have been run either
by the greeting program, another application, or by the SWITCH/SCREEN CONNECT

program.

350 PRINT D$"PR#0"
355 PRINT G$"15V" (volume: 0 to 15 where 15 is the loudest setting)
356 PRINT G$"45P" (pitch: 1 to 63 where 63 is the highest pitch)

When the program is first run, the default setting is 12 for volume and 22 for

pitch.

115

1

Chapter 5

Single Switch Scan Techniques

Sequential Scanning

A sequential scanning task uses a scan or cursor to signify or somehow
highlight each of the alternatives listed. When the scan reaches the last
alternative or item comprising the list of alternatives, the scanning process
begins anew with the first item on the list. Although it is possible to
restrict the number of times the list is scanned (e.g., after 10 complete
scans the task is terminated or the next item is presented), sequential
scanning usually continues until a switch is engaged or the Esc key is

pressed.

Scan Readiness

The SCANCOLOR program displays three colors, one of which is different.
The task is to select the different color when it is scanned. If the correct
alternative is selected, the screen is cleared and the color is re-shown to
signify a correct response. No feedback is given following an incorrect
response. The program runs until the Esc key is pressed. For each item
presented, the alternatives are randomly arranged. The SCANCOLOR listing is
as follows:

10 REM SCANCOLOR
20 REM
30 HOME
40 GR: COLOR=15
50 RA = INT(RND(1)*15+1)
60 RC = INT(RND(1)*15+1)
70 IF RA = RC THEN 50
80 R = INT(RND(1)*3+1)
90 A = 3: B = 12
100 FOR K = 1 TO 3
110 COLOR=RA
120 IF K < > R THEN 140
130 COLOR=RC: AA = A: BB = B
140 FOR J = 1 TO 15
150 HLIN A,B AT 10+J
160 NEXT J
170 A = A+12: B = B+12
180 NEXT K
190 A = 3: B = 12: P = 1
200 COLOR=15
210 HLIN A,B AT 30
220 FOR D = 1 TO 100
230 IF PEEK(-16287) > 127 THEN 320
240 IF PEEK(-16384) = 155 THEN 460
250 NEXT D
260 COLOR=0
270 HLIN A,B AT 30
280 A = A+12: B = B+12
290 IF A > 27 THEN A = 3: B = 12
300 P = P+1: IF P > 3 THEN P = 1
310 GOTO 200
320 IF R = P THEN 340
330 GOTO 440

116

340
350
360
370
380
390
400
410
420
430
440
450
460
470
480

COLOR=0
HLIN A,B AT 30
FOR K = 1 TO 2
FOR J = 1 TO 15
IF K = 1 THEN 410
HLIN AA,BB AT 10+J
FOR L = 1 TO 200: NEXT L:
HLIN 3,37 AT 10+J
NEXT J
COLOR=RC: NEXT K
FOR L = 1 TO 2000: NEXT L
GOTO 40
TEXT: HOME
POKE -16368,0
END

GOTO 420

Each item can be displ: &yed within a screen boarder by adding the
following statements:

41 HLIN 0,39 AT 0

42 HLIN 0,39 AT 35
43 VLIN 0,35 AT 0

44 VLIN 0,35 AT 39

A very simple way to add sound to each cursor scan is to use CHR$(7).

Each time this statement (which is the ASCII code for the bell) is

encountered, a beep is sounded.

205 PRINT CHR$(7)

A similar method for highlighting each cursor scan is accomplished by the

following loop:

325 FOR L = 1 TO 7
326 PRINT CHR$(7)
328 NEXT L

Touchwindow Input

The PDL(0) and PDL(1) instructions are used to sense Touchwindow input.

To segment the screen into three sections which correspond to the SCANCOLOR
display, line 230 is modified to read horizontal screen input. When the
Touchwindow is touched as indicated by a PD value greater than 10, control is
sent to line 315 and the screen color corresponding to the window position
touched is set. If the value in PD is 11 to 75, P is set to 1; if the value

is 76 to 150, P is set to 2; and if the value in PD is greater than 150, P is

set to 3.

230 PD = PDL(0): IF PD > 10 THEN 315
315 P = 1: IF PD > 75 THEN P = 2
316 IF PD > 150 THEN P = 3

Because the Touchwindow precludes the need for sequential scanning, this part
of the program can be by-passed by inserting several GOTO statements.

195 GOTO 230
235 GOTO 230

If the program is set to read Touchwindow input, and a Touchwindow is not

117

1

connected, the program will act as if a response has been made. The reason
for this is that when nothing is connected to the nine-pin game port, the
value returned by PDL(0) is 255. If nothing is connected to the game port and
the program interprets a value in PDL(0) of 10 or greater as a response, the
program will logically assume that a response has been made. So as to avoid
possible problems, be sure that the BASIC code is consistent with the adaptive
hardware being used.

If an application is used with several devices on a frequent basis, it
might be useful to add an adaptive input sensing component so that at the very
beginning of a program the value returned by the nine-pin game port is read.
If the value is 255, IP is set to 1 and the normal switch sensors are used;

that is, PEEK(-16287) and/or PEEK(-16286); if the value in PDL(0) is less
than 10, IP is set to 2 and the program then reads Touchwindow input; if PD
is between 50 and 200 (and the trim settings are not out of whack), the
program reads joystick input.

15 PD = PDI.0)
16 IF PD = 255 THEN IP = 1
17 IF PD < 10 THEN IP = 2
18 IF PD > 49 AND PD < 201 THEN IP = 3

The variable IP is then used throughout the program to determine what type of

input is being used.

Scan Sound Techniques

To add sound to the scan component, the machine language sound subroutine
discussed in the last chapter is used by adding lines 21, 22 and 23.

21 FOR K = 1 TO 21: READ A
22 POKE 801+K,A: NEXT K
23 DATA 174,32,3,173,48,192,136,208,5,206,

33,3,240,6,202,208,245,76,34,3,96

Sound is then added to each cursor display by

215 POKE 800,100
216 POKE 801,200
217 CALL 802

To lower the pitch of the sound, modify line 215 (e.g., POKE 800,150).
To increase the duration of the sound, modify line 216. The values for pitch
and duration must be in the 1 to 255 range.

215 POKE 800,150
216 POKE 801,255

Chapter 4 provides a detailed description concerning how to modify sound

pitch and duration.

Varying Scan Pitch

For students with visual impairments, varying the pitch of the cursor can

provide useful feedback. This is accomplished in the above program by varying
the pitch value in line 215 in conjunction with variable P which is used to
designate the cursor position:

215 POKE 800,40+30*P

118

The above modification provides a scan pitch that decreases as the scan moves
from left to right. To provide an increasing scan pitch, make the following
change:

215 POKE 800,190-30*P

With the sound routine installed, auditory feedback can be provided
following a correct response by adding a note/sound generating sequence
beginning in line 351:

351 FOR L = 1 TO 15
352 POKE 800,100-L*3
353 POKE 801,50
354 CALL 802: NEXT L

Screen Color

What if a color monitor is not being used? Without a color monitor,
several of the color shadings are not distinguishable in monochrome. For use
with a monochrome monitor, set the correct answer to white (color code 15) and
the incorrect answers to purple (color code 3):

45 RC = 15
46 RA = 3

Controlled and Automatic Scanning

The SCANCOLOR program uses what might be ca,Jed automatic scanning in
that each item in the list (colors in this situation) is automatically scanned
for a specified period of time. A controlled scanning procedure can be
impl-mentsd that requires the student to use the switch to move the scan. If

the scan is directed to the target or correct alternative, and no further
switch response is made for a specified period of time, this is treated as a

correct response. Obviously, to be effective, the single switch user mus:
understand that not activating the switch for the specified time period
results in an alternative being selected.

To modify the SCANCOLOR program so that the switch is used to move the
cursor and a correct response is made if the cursor scan is under the correct

color and no response is made for approximately six seconds, make the
following changes:

215 IF PEEK(- 16267) > 127 THEN 215
220 FOR D = 1 TO 200
230 IF PEEK(-16287) > 127 THEN 260
255 IF R = P THEN 340
256 GOTO 200
320
330

The number of iterations used in the loop to evaluate switch responses

is increased to 200 in line 220, and line 230 directs the program following
a switch response to the routine that controls the scan. In line 255,
following the completion of a loop after no switch response is made, the

screen is evaluated to determine whether the scan is under the correct
alternative. If this is the case, correct response feedback is given; if the

scan is under an incorrect alternative and no response is made, the scan
remains in that position until the switch is engaged to move the scan. In

other words, the scan must be directed to the correct alternative before

feedback is given.

119

When using single switch software, a variety of techniques must be used
to determine what best meets a specific individual's needs. There are many
applications where controlled or direct scanning have been extremely
effective. The only cautionary note is that if the correct alternative is the
first item being scanned, and the scan is not moved by means of the switch,
the correct response routine is initiated if the switch is not engaged within
the time period specified by the loop. For some students, this can lead to
a bit of confusion.

Instead of requiring the student to move the scan to the correct
alternative before feedback is given, the time delay can be used to select an
alternative following either a correct or incorrect response by making these
modifications:

255 GOTO 320
320 IF R = P THEN 340
330 GOTO 440

The only difficulty with the above modification is that the switch must be
engaar,^ before the loop checking for a switch response has elapsed otherwise
the a_L_ernative currently being scanned is treated as a response.

Scan Latency

A student's switch behavior must be observed very closely, especially when
first using scanning routines. If the student is able to engage the switch
but the response is too slow, the scan interval must be increased. On the
other hand, if the student is able to respond within a second or two after the
correct alternative is scanned, a scan interval of 7 or 8 seconds is obviously
too long.

Based on the student's observed behavior, an appropriate length of scan
interval time must be determined (or at least estimated based on available

observational information). Although most switch program do not include this
type of feedback, it is a fairly easy task to add a scan latency tracking
routine (as was done with the NILT'S NOSE program in Chapter 3) to most single
switch programs. The following statements can be added to the SCANCOLOR
program so that the percent of the scan interval that had elapsed for each
item before a switch response is tallied and shown following the last item.
An asterisk (*) is used to signify correct responses when the latency data is

displayed on screen.

25 DIM LT$(50)
220 FOR D = 1 TO 250
441 N = N+1
442 D = INT(D / 250 * 100+.5)
443 LT$(N) = STR$(D)
444 IF R = P THEN LT$(N) = LT$(N) + "*"
480 VTAB 7: PRINT "SCAN LATENCY": PRINT
490 FOR K = 1 TO N
500 PRINT K" "LT$(K)
510 NEXT K
520 END

When the above routine is added, the following illustrates the type of scan

latency data displayed:

SCAN LATENCY

1 67
2 15 *

120

3 54 *

The string array LT$(50), which is dimensioned in line 25 to hold up to
50 items, is used to store the latency results for each item. The variable
N in line 441 tracks each item number and line 442 changes the scan interval
value when the switch is engaged to a percentage. This value is converted to
a strihg in line 443 and an asterisk is added to the value in LT$ if the
alternative selected is correct. After the program is exited by means of the
escape key, lines 480 through 510 display the latency results.

The length of the scan interval can be varied by means of a variable by
specifying variable SP in line 35 at the beginning of the program, and then
using this value when needed in the program:

35 SP = 250
220 FOR K = 1 TO SP
442 D = INT(D / 250 * 100+.5)

Chance Responses

Because a student is able to engage a switch during a scan task does not
mean that the student actually comprehends the task or the task elements.
Always remember that scan routines are essentially multiple-choice items. For
a given task, the score that would be expected by chance alone is determined
by

NUMBER OF ITEMS / NUMBER OF ALTERNATIVES

If 15 items are presented, and each item contains three alternatives, the
score expected based on chance alone would be 15/3 or 5. If a student
receives a score or 5 or 6, the possibility exists that the student's
responses simila-7 to what would be expected by chance alone.

Although it is probably not worth the effort to create a statistical
decision making model to determine if a student is responding on a random
basis, the possibility of chance or random responses must always be considered
when evaluating multiple-choice tasks, and especially when evaluating the
single switch scan responses of a student.

Directional Scanning

The scan concept can be used in many ways to provide computer access to
many tasks. The SCAN DRAW program provides a low-resolution drawing task in
which a low-resolution dot is displayed in the direction of the vertical (up
or down) or horizontal scan (left or right). If the scan is displayed on the
left-side of the screen and the switch is engaged, a dot is displayed each
time the switch is engaged toward the scan. Likewise, if the scan is at the
bottom of the screen, a dot is displayed toward the scan.

In high resolution graphics, a switch graphics program could be

constructed in which an arrow (which serves the same function as the "turtle"

in LOGO) could be used to point to left, right, up or down. In this
situation, a dot is drawn in the direction of the arrow. Another variation
is to display symbols or the letters L, R, U and D at the bottom of the
screen, and then to display a dot in accordance with the direction of the
letter being scanned.

Although SCAN DRAW is conceptually very similar to traditional scanning
in that a list of alternatives is scanned (i.e., left, right, up and down),
the visual display not only shows the elements comprising the list but also

121

graphically shows the direction. This concept could be used in the

development of games (e.g., tic-tack-toe) and for tasks such as mazes in which

the task is to move in different screen directions.

In terms of difficulty, if a student is not able to comprehend the task

of simple scanning (e.g., the SCANCOLOR program), the student will have added

difficulty conceptualizing a directional scanning procedure.

10 REM SCAN DRAW
20 REM
30 SP = 100
40 H = 20: V = 20
50 HOME
60 GR
70 COLOR=15: PLOT H,V
80 FOR L= 1 TO 2
90 COLOR=0
100 SX = SC-1: IF SX < 1 THEN SX = 4

110 IF L = 2 THEN SX = SC: COLOR=2
120 IF SX = 1 THEN VLIN 5,34 AT 0

130 IF SX = 2 THEN HLIN 5,34 AT 0

140 IF SX = 3 THEN VLIN 5,34 AT 39

150 IF SX = 4 THEN HLIN 5,34 AT 39

160 NEXT L
170 IF PEEK(-16287) > 127 THEN 240

180 IF PEEK(-16384) = 155 THEN 360
190 NC = NC+1: IF NC > SP THEN 210

200 GOTO 170
210 NC = 0
220 SC = SC+1: IF SC > 4 THEN SC = 1

230 GOTO 80
240 IF SC = 1 THEN H = H-1
250 IF SC = 2 THEN V = V-1
260 IF SC = 3 THEN H = H+1
270 IF SC = 4 THEN V = V+1
280 IF H < 1 THEN H = 1
290 IF H > 38 THEN H = 38
300 IF V < 1 THEN V = 1
310 IF V > 38 THEN V = 38
320 COLOR=15
330 PLOT H,V
340 FOR D = 1 TO SP: NEXT D
350 GOTO 170
360 POKE -16368,0
370 TEXT: HOME
380 END

The variable SP in line 30 determines the scan speed. The color of the

scan (either a vertical or horizontal line) is set to 2 in line 110. A

counter is used to determine the length of the scan interval (variable NC in

line 190). If the switch is engaged, control is sent to line 240 where SC

indicates the position of the scan: if SC = 1, the scan is to the left; if 2,

the scan is at the top of the screen; if 3, the scan is to the right; and if

4, the scan is at the bottom of the screen.

Depending on the position of the scan, the variables used to control the

vertical (V) and horizontal (H) positions are changed in accordance with the

direction of the scan. Lines 280 to 310 insure that a dot is displayed within

allowable limits.

122

Low-resolution Scan Applications

Low-resolution Matching

There are many different tasks which can be created using low-resolution
graphics. The following is a very simple matching task in which the switch
is activated when the two low-resolution images are the same. If the switch
is engaged, and the images are the same, a beep is sounded (lines 200 and
210). If the switch is activated and the images are not the same, nothing
happens. This type of routine should be used with a liberal dose of verbal
prompts to encourage activating the switch when the images are the same and
to "wait" when the images are not the same.

10 REM LOWRES MATCH
20 REM
30 HOME
40 GR
50 FOR X = 1 TO 10
60 COLOR=15
70 S1 = INT(RND(1)*3+1)
80 S2 = INT(RND(1)*3+1)
90 H = 16: V = 6
100 ON S1 GOSUB 270,300,350
110 H = 16: V = 24
120 ON S2 GOSUB 270,300,350
130 FOR D = 1 TO 250
140 IF PEEK(-16287) > 127 THEN 190
150 NEXT D
160 GOTO 210
170 IF S1 < > S2 THEN 200
180 FOR L = 1 TO 7
190 PRINT CHR$(7): NEXT L
200 FOR L = 1 TO 2000: NEXT L
210 CALL -1994
220 NEXT X
230 TEXT: HOME
240 END
250 HLIN H,H+6 AT V+4
260 VLIN V,V+8 AT H+3
270 RETURN
280 HLIN H,H+6 AT V
290 HLIN H,H+6 AT V+8
300 VLIN V,V+8 AT H
310 VLIN V,V+8 AT H+6
320 RETURN
330 FOR K = 0 TO 3
340 PLOT H+3-K,V+K
350 PLOT H+3+K,V+K
360 NEXT K
370 HLIN H,H+6 AT V+4
380 RETURN

The LOWRES MATCH program first generates two random numbers between 1 and

3 in lines 70 and 80. These random values, stored in variables S1 and S2, are
then used to generate one of the three low-resolution shapes stored in
subroutines beginning in lines 270, 300 and 350. As an example, if S1 is set

to 3, line 100 goes to the third line number in the GOSUB list which is the
subroutine beginning in line 350. The statement CALL-1994 in line 230 clears
the low-resolution screen after each item presentation.

85:

To increase the probability that the two shapes are the same, add line

123

4 cs

85 IF RND(1) > .6 THEN Si = S2

To prevent continuous input, insert a switch check after line 235.

235 IF PEEK(-16287) > 127 THEN 235

To preset the number of task items, add lines 35 and 50:

35 INPUT "TASK ITEMS? ";N
50 FOR X= 1 TO N

The following additions change the images displayed to the 15 low-

resolution colors following each correct response:

211 FOR K = 1 TO 15
212 COLOR=K
213 H = 16: V = 6
214 ON S1 GOSUB 270,300,350
215 H = 16: V = 24
216 ON S2 GOSUB 270,300,350
217 FOR L - 1 TO 50: NEXT L
218 NEXT K

Following an incorrect response (e.g., the switch is engaged when the
images are dissimilar), there is a slight delay before the next pair is
presented. This can be changed by redirecting program control following an
incorrect response from line 220 (which contains a time delay loop) to line
230 (which is used to clear the low-resolution screen):

170 IF S1 < > S2 THEN 210

In order to provide a visual "break" between task items, a second delay
loop can be added after line 230.

236 FOR L = 1 TO 750: NEXT L

Although additional low-resolution shapes could be added to the program,

this would decrease the frequency of two identical images appearing. This

short program can best be used by modifying one of the existing low-resolution

images. The following extends the figure in the third subroutine to that of

a diamond:

371 PLOT H+K,V+3+K
372 PLOT H+6-K,V+3+K

The low-resolution images comprising the LOWRES MATCH program can be

changed to numbers, letters, or whatever images are uesired. The LOWRES
NUMBER MATCH program uses graphic numbers as item alternatives:

10 REM LOWRES NUMBER MATCH
20 REM
30 HOME
40 GR
50 FOR X = 1 TO 10
60 IF PEEK(-16287) > 127 THEN 60
70 COLOR=15
80 S1 = INT(RND(1)*5+1)
90 S2 = INT(RND(1)*5+1)
100 IF RND(1) > .6 THEN S1 = S2
110 H = 16: V = 6
120 ON S1 GOSUP 290,330,380,440,480
130 H = 16: V = 24

124

140 ON S2 GOSUB 290,330,380,440,480
150 FOR D = 1 TO 250
160 IF PEEK(-16287) > 127 THEN 210
170 NEXT D
180 GOTO 250
190 COLOR=15
200 GOTO 210
210 IF S1 < > S2 THEN 240
220 FOR L =1 TO 7
230 PRINT CHR$(7): NEXT L
240 FOR L = 1 TO 2000: NEXT L
250 CALL -1994
260 NEXT X
270 TEXT: HOME
280 END
290 PLOT H+1,V
300 VLIN V,V+6 AT H+2
310 HLIN H+1,H+3 AT V+7
320 RETURN
330 HLIN H+1,H+3 AT V
340 PLOT H,V+1: PLOT H+4,V+1: PLOT H+4,V+2
350 PLOT H+3,V+3: PLOT H+2,V+4: PLOT H+1,V+5
360 PLOT H,V+6: HLIN H,H+4 AT V+7
370 RETURN
380 HLIN H,H+4 AT V
390 HLIN H,H+4 AT V+7
400 VLIN V,V+7 AT H+4
410 HLIN H+2,H+4 AT V+3
420 HLIN H+2,H+4 AT V+4
430 RETURN
440 VLIN V,V+7 AT H+3
450 PLOT H+2,V+1: PLOT H+1,V+2: PLOT H,V+3
460 HLIN H,H+4 AT V+4
470 RETURN
480 HLIN H,H+4 AT V
490 VLIN V,V+2 AT H
500 HLIN H,H+3 AT V+3
510 VLIN V+4,V+6 AT H+4
520 HLIN H,H+4 AT V+7
530 RETURN

The program can be modified to present horizontal and vertical lines of
various sizes by deleting lines 290 to 530, and then adding lines 290 to 490:

DEL 290,530

290 HLIN H-1,H+1 AT V
300 RETURN
330 VLIN V-1,V+1 AT H
340 RETURN
380 HLIN H-3,H+3 AT V
390 RETURN
440 VLIN V-3,V+3 AT H
450 RETURN
480 HLIN H-5,H+5 AT V
490 RETURN

Yet another modification that can be made is to change the auditory
feedback following a correct match by the following subroutines:

25 FOR K = 1 TO 21: READ A
26 POKE 801+K,A: NEXT K

125

27 DATA 174,32,3,173,48,192,136,208,5,206,
33,3,240,6,202,208,245,76,34,3,96

235 GOSUB 5000
5000 POKE 800,100
5010 POKE 801,200
5020 CALL 802
5030 POKE 800,75
5040 POKE 801,150
5050 CALL 802
5060 RETURN

As discussed in Chapter 4, the notes generated by the subroutine
beginning in line 5000 can be modified in accordance with your patience for
experimentation and musical ability.

Low-resolution Discrimination

The LOWRES SCAN program provides an easy-to-modify program for

presenting a three alternative low-resolution scan task. For each item
presented, three low-resolution images are displayed from left to right. For
every item, two of the images are the same and one is different. A horizontal
line is used to scan each of the images displayed. If the switch is engaged
while the dissimilar alternative is being scanned, correct feedback is given.

The program is comprised of seven different low-resolution images. These
images are easily changed and/or modified and provide an excellent opportunity
to create a variety of low-resolution tasks. Items are presented in a
continuous loop until the program is exited by pressing the Esc key.

10 REM LOWRES SCAN
20 REM
30 HOME
40 VTAB 2: HTAB 15
50 PRINT "LOWRES SCAN"
60 VTAB 7
70 INPUT "SCAN SPEED (1=FAST, 9=SLOW): ";ST$
80 ST = VAL(ST$): IF ST < 1 THEN ST = 4
90 HOME
100 C = 3
110 P = 1
120 GR
130 COLOR=15
140 FOR L = 1 TO 500: NEXT L
150 VLIN 1,39 AT 13
160 VLIN 1,39 AT 27
170 RC = INT(RND(1)*7+1)
180 RI = INT(RND(1)*7+1)
190 IF RI = RC THEN 180
200 RP = INT(RND(1)*3+1)
210 FOR PL = 1 TO 3
220 GS = RI: IF RP = PL THEN GS = RC
230 IF PL = 2 THEN C = 17
240 IF PL = 3 THEN C = 31
250 ON GS GOSUB 540,560,590,610,630,660,690
260 NEXT PL
270 COLOR=15
280 HLIN (P-1)*14+4, (P-1)*14+8 AT 30
290 IF PEEK(-16287) > 127 THEN 290
300 FOR D = 1 TO ST*10
310 IF PEEK(-16287) > 127 THEN 350
320 IF PEEK(-16384) = 155 THEN 510

126

1 Cs r.-7
1

330
340
350
360
370
380
390

NEXT D: GOSUB 470
GOTO 270
IF RP = P THEN 390
FOR L = 1 TO 1000: NEXT L
GOTO 100
GOSUB 470
FOR K = 1 TO 7

400 PRINT CHR$(7)
410 COLOR=K*2
420 HLIN (P-1)*14+4, (P-1)*14+8 AT 30
430 NEXT K
440 FOR L = 1 TO 1500: NEXT L
450 GOSUB 470
460 GOTO 100
470 COLOR=0
480 HLIN (P-1)*14+4, (P-1)*14+8 AT 30

490 P= P+1: IF P> 3 THEN P= 1

500 RETURN
510 POKE -16368,0
520 TEXT: HOME
530 END
540 PLOT C+3,20
550 RETURN
560 PLOT C,15
570 PLOT C+6,15
580 RETURN
590 HLIN C,C+6 AT 20
600 RETURN
610 VLIN 5,25 AT C+3
620 RETURN
630 PLOT C+3,15
640 VLIN 10,20 AT C+5
650 RETURN
660 HLIN C,C+6 AT 15
670 VLIN 15,20 AT C+3
680 RETURN
690 HLIN C,C+7 AT 15
700 VLIN 15,20 AT C
710 RETURN

The low-resolution images are contained in the seven subroutines
beginning in line 540 (see line 250 in the program which is used to call the

various subroutines). The variable C indicates the beginning column for each
alternative. Thus, for alternative #1 the beginning column is 3, for

alternative #2 the beginning column is 17, and for alternative #3 the

beginning column is 31.

The first subroutine places a low-resolution dot in column C+3 and at row
20. Remember that each PLOT sets the coordinates at PLOT COLtJMN,ROW. To plot
a dot at column C+3 and at row 25, modify line 540 as follows:

540 PLOT C+3,25

The subroutine in line 590 draws a horizontal line from column C to
column C+6 at row 20. The subroutine in line 610 draws a vertical line from
row 5 to 25 at column C+3. The length and location of each of these lines is
easily modified by manipulating the HLIN and VLIN variables:

590 HLIN C,C+8 AT 5
610 VLIN 1,5 AT C

Additional statements can be added to enhance the low-resolution images:

127

615 HLIN C,C+8 AT 6
616 VLIN 7,11 AT C+8

The subroutine in 610 can be enhanced from a simple vertical line by the
following modifications:

610 VLIN 11,15 AT C
615 HLIN C,C+8 AT 16
616 VLIN 17,21 AT C+8

As with all low-resolution graphics, changing the color is easily
accomplished by setting the COLOR instruction immediately before each low-

resolution image is displayed, Remember, however, to reset the color
otherwise all subsequent graphics is displayed in the last color selected.

665 COLOR=11
675 COLOR=15

The above changes the color of the vertical line. To change the color of
both horizontal and vertical lines, place the color statement in the first
line of the routine:

660 COLOR=11
665 HLIN C,C+6 AT 15

By saving the program on disk using different file names, low-resolution
scan tasks can be created using dot patterns, lines or line combinations, and
a variety of low-resolution shapes.

Scan Techniques

Stimulus Scanning

Instead of using a cursor to scan alternatives, the actual target
alternative can be used ao the scan. When the program below is run, two low-
resolution figures are displayed on the screen. Immediately below these
images, the target figure is used to scan each of the alternatives. When the

scan stimulus is immediately below the matching target stimulus and the switch
is engaged, auditory feedback is given signifying a correct response.

If a child is having difficulty conceptualizing a three alternative
scanning task, stimulus scanning might provide a useful readiness task for
more abstract scanning procedures. This program presents a true/false task
in which the probability of selecting a correct answer for a given item is .5.
For a task comprised of 10 items, a chance score is 5.

10 REM STIMULUS SCANNING
20 REM
30 HOME: GR
40 FOR X = 1 TO 10
50 COLOR=15
60 S1 = INT(RND(1)*5+1)
70 S2 = INT(RND(1)*5+1)
80 IF Si = S2 THEN 60
90 H = 8: V = 8
100 ON S1 GOSUB 350,380,430,490,530
110 H = 24
120 ON S2 GOSUB 350,380,430,490,530
130 C = Sl: SP = 1: CP = 1
140 IF RND(1) > .5 THEN C = S2: SP = 2

128

150 H = 8: V = 30
160 ON C GOSUB 350,380,430,490,530
170 FOR D = 1 TO 250
180 IF PEEK(-16287) > 127 THEN 260
190 NEXT D
200 COLOR=0
210 ON C GOSUB 350,380,430,490,530
220 H = H+15: IF H > 25 THEN H = 8
230 CP = CP+1: IF CP > 2 THEN CP = 1
240 COLOR=15
250 GOTO 160
260 IF SP = CP THEN 280
270 GOTO 300
280 FOR L = 1 TO 7
290 PRINT CHR$(7): NEXT L
300 FOR L = 1 TO 2000: NEXT L
310 CALL -1994
320 NEXT X
330 TEXT: HOME
340 END
350 HLIN H,H+6 AT V+4
360 VLIN V,V+8 AT H+3
370 RETURN
380 HLIN H,H+6 AT V
390 HLIN H,H+6 AT V+8
400 VLIN V,V+8 AT H
410 VLIN V,V+8 AT H+6
420 RETURN
430 FOR K = 0 TO 5
440 PLOT H+3-K,V+K
450 PLOT H+3+K,V+K
460 NEXT K
470 HLIN H-3.H+9 AT V+6
480 RETURN
490 VLIN V.V+8 AT H
500 VLIN V,V+8 AT H+6
510 HLIN H,H+6 AT V+4
520 RETURN
530 FOR K = 1 TO 8
540 PLOT H+K,V+K
550 PLOT H+7-K,V+K
560 NEXT K
570 RETURN

The program is set to present 10 items. This number can be increased or
decreased by changing the last value in the loop in line 40. To partition the
screen into two sections, add the following:

55 VLIN 0,39 AT 19

Open Alternative Scanning

Most single switch scanning applications involve self-contained programs
in that the program provides the alternatives, the scanning, and response

feedback. There are occasions, however, when it is useful to combine a
computer generated scanning routine with non-computer generated alternatives.
For example, different photographs (e.g., the student's house and school
building) could be positioned either below, above or on the screen (using a

plastic overlay) and scanned.

Needless to say, this type of activity must be accompanied by a wealth

129

of verbal cues such as "which is your house" or "which is your school." After
the switch is engaged, the scanning is interrupted, and verbal feedback is
given signifying a correct or incorrect response.

The OPENSCAN program listed below can be used to generate from 2 to 4

alternatives. In addition, the location of the scan can be set to one of
three screen positions. The OPENSCAN program can be used with photographs,
drawings, transparencies, concrete objects or anything else that might be
appropriate. Most important, the OPENSCAN program can be used to present
visual concepts and images that are most meaningful to the student.

10 REM OPENSCAN
20 REM
30 FOR K + 1 TO 15: E$ = E$ 4+CHR$(32): NEXT K
40 HOME: VTAB 7
50 FOR K = 1 TO 21: READ A
60 POKE 801+K,A: NEXT K
70 DATA 174.32,3,173,48,192,136,208,5,206,

33,3,240,6,202,208,245,76,34,3,96
80 HOME: HTAB 15
90 PRINT "OPENSCAN"
100 VTAB 8
110 INPUT "ALTERNATIVES (2-4): ";AL$
120 AL = VAL(AL$): IF AL < 2 OR AL > 4 THEN 80
130 A = 2: B = 17: CN = 21: IF AL = 3 THEN A = 3:

B = 8: CN = 14
140 IF AL = 4 THEN A = 3: B = 6: CN = 10
150 PRINT
160 INPUT "SCAN POSITION (1, 2 OR 3): ";SP$
170 SP = VAL(SP$): IF SP < 1 THEN SP = 1
180 HT = 20: IF SP = 2 THEN HT = 10
190 IF SP = 3 THEN HT = 1
200 PRINT
210 INPUT "SCAN SPEED (1=FAST TO 9=SLOW): ";ST$
220 ST = VAL(ST$): IF ST < 1 THEN ST = 1
230 N$ = LEFT$(N$,15)
240 VP = 21: IF SP = 1 THEN VP = 2
250 HOME
260 FOR L = 1 TO 1000: NEXT L
270 FOR K = HT TO HT+3
280 VTAB K: HTAB 1: CALL -868: NEXT K
290 FOR K = HT TO HT+3
300 VTAB K: HTAB A+CN*IN
310 INVERSE: PRINT LEFT$(E$,B);
320 NEXT K: NORMAL
330 POKE 800,150: POKE 801 100: CALL 802
340 POKE -16368,0
350 FOR D = 1 TO ST*20
360 IF PEEK(-16287) > 127 THEN 410
370 KY = PEEK(-16384): IF KY > 127 THEN 410
380 NEXT D
390 IN = IN+1: IF IN > AL-1 THEN IN = 0
400 GOTO 270
410 POKE -16368,0
420 IF KY = 155 THEN 550
430 VTAB VP
440 FOR L = 1 TO 1000: NEXT L
450 IN = 0
460 VTAB VP+2: HTAB 5
470 PRINT "(PRESS KEY OR SWITCH TO CONTINUE)"
480 POKE -16368,0
490 IF PEEK(-16287) > 127 THEN 520

130

500
510
520
530
540
550
560

KY = PEEK(-16384): IF KY
GOTO 490
POKE -16368,0
IF KY = 155 THEN 550
GOTO 250
VTAB 23
END

> 127 THEN 520

Left-Right Open Scan

A variation of the above program is to provide a very large scan on either
the left- or the right-hand side of the screen. As with the OPENSCAN program,
this application can be used with photos, overlays, drawings or even objects.
For example, a picture of a horse and a duck are placed before the screen.
The student is asked, "Which is the duck?". If the student selects the scan
highlighting the duck,

10
20

the student is give immediate verbal feedback.

REM OPENSCAN-2
REM

30 FOR K = 1 TO 15: E$ = E$ + CHR$(32): NEXT K
40 HOME: VTAB 7
50 FOR K = 1 TO 21: READ A
60 POKE 801+K,A: NEXT K
70 DATA 174,32,3,173,48,192,136,208,5,206,

33,3,240,6,202,208,245,76,34,3,96
80 HOME: HTAB 15
90 PRINT "OPENSCAN-2"
100 VTAB 7
110 INPUT "SCAN SPEED (1=FAST TO 9=SLOW): ";ST$
120 ST = VAL(ST$): IF ST < 1 THEN ST = 1
130 V = 1: H = 3
140 HOME
150 FOR L = 1 TO 2000: NEXT L
160 FOR K = 3 TO 20
170 VTAB V+K: HTAB H
180 INVERSE: PRINT E$
190 NEXT K
200 NORMAL
210 POKE 800,150: POKE 801,100: CALL 802
220 POKE -16368,0
230 FOR D = 1 TO ST*20
240 IF PEEK(-16287) > 127 THEN 300
250 KY = PEEK(-16384): IF KY > 127 THEN 300
260 NEXT D
270 HOME
280 H = H+20: IF H > 23 THEN H = 3
290 GOTO 160
300 POKE -16368,0
310 IF KY = 155 THEN 420
320 FOR L = 1 TO 2000: NEXT L
330 VTAB 23: HTAb 5
340 PRINT "(PRESS KEY OR SWITCH TO CONTINUE)"
350 POKE -16368,0
360 IF PEEK(-16287) > 127 THEN 390
370 KY = PEEK(-16384): IF KY > 127 THEN 390
380 GOTO 360
390 POKE -16368,0
400 IF KY = 155 THEN 420
410 GOTO 130
420 VTAB 23
430 END

131

Quadrant Scanning

Another variation of the open scanning technique is quadrant scanning.
For this type of scan procedure, the screen is divided into four sections and
each section is scanned in sequence. As shown in line 280 below, the scan
moves from left-to-right, then from the first row to the second row. After
the fourth entry in the quadrant has been scanned, the scan is positioned to
the first quadrant and the scanning sequence begins anew.

1

3

2

4

The following line modifications to the above program partition the
screen into four quadrants, and then scan each quadrant in the order
specified.

10 REM OPENSCAN-4
90 PRINT "OPENSCAN-4"
160 FOR K = 0 TO 8
280 H = H+20: IF H > 23 THEN H = 3: V = V+12:

IF V > 13 THEN V = 1

To change the scan sequence as shown below the order of the scan
sequence, change line 280:

1 I 3

2 4

280 V = V+12: IF V > 13 THEN V = 1: H = H+20:
IF H > 23 THEN H = 3

132

Chapter 6

High-resolution Graphics

Easy-to-Use High-resolution Programs

High-resolution Screen Displays

High-resolution graphics has played an extremely important role in the
development of single switch software. From a programming standpoint,
graphics does present several problems in that the programming can be more
difficult and the amount of memory required can be considerable. The HIRES
COLOR program listed below is relatively short, but it does illustrate how to
generate a high-resolution image.

HGR (set high-resolution graphics mode)
HCOLOR (set high-resolution color)
HPLOT (plot a high-resolution dot or line)

The high-resolution screen can display up to 53,760 dots using a screen
comprised of up to 280 columns and 192 rows. Each time the switch is engaged,
either a vertical horizontal or vertical high-resolution line is displayed.
Actually, the line is comprised of five high-resolution lines as specified by
the loop beginning in line 140.

10 REM HIRES COLOR
20 REM
30 HOME
40 HGR
50 HC = HC+1: IF HC > 7 THEN HC = 1
60 IF PEEK(-16287) > 127 THEN 60
70 IF PEEK(-16287) > 127 THEN 100
80 IF PEEK(-16384) = 155 THEN 210
90 GOTO 70
100 HCOLOR=HC
110 R = INT(RND(1)*155)
120 C = INT(RND(1)*275)
130 RN = RND(1)
140 FOR L = 1 TO 5
150 IF RN > .5 THEN 180
160 HPLOT C+L,0 TO C+L,155
170 GOTO 190
180 HPLOT 0,R+L TO 275,R+L
190 NEXT L
200 GOTO 50
210 POKE -16368,0
220 TEXT: HOME
230 END

The HIRES COLOR program can be used to check (or set) a color moLitor by
displaying the HCOLOR code each time the switch is engaged:

195 VTAB 22: PRINT "COLOR CODE = "HC

The following high-r?solution color codes are available:

CODE COLOR

0 black

133

e
S. 4

1 green
2 violet
3 white
4 black
5 orange
6 blue
7 white

Essentially, there are only six colors because of the eight codes (0 to
7), 0 and 4 are used for black and 3 and 7 for white. Try experimenting with
different colors by changing the HCOLOR statement in line 100. To display
lines using a single color such as green, change line 100:

100 HCOLOR=1

The above is one program in which a continuous switch response might be

allowed. This can be accomplished by deleting line 60.

Instead of displaying a wide high resolution line, change line 140 to
display a narrower high-resolution line:

or try

140 FOR L = 1 TO 1

140 FOR L = 1 TO 2

The HPLOT command can be used to specify a single dot by indicating the
column, followed by the row value. The following displays a dot in column 279

and row 0 (the upper right-h nd corner of the screen):

196 HCOLOR=3
197 HPLOT 279,0

Needless to say, the density of the dots can be used to produce much

clearer images as compared to low-resolution graphics. However, high-
resolution graphics can substantially increase the amount of memory being
used, and thereby limit the size of a BASIC program that can be used.

Dot-to-Dot

The DOT-TO-DOT program is an easy-to-use high-resolution graphics program
that illustrates how a single switch can be used to draw high-resolution
shapes, figures and images. The program begins by reading the screen dots
that are to be connected. The coordinates for each dot are read from DATA
statements beginning in line 280.

The first DATA statement in line 280 signifies that a dot is to
displayed at screen position 120,20, where 120 indicates the column or
horizontal screen location, and 20 signifies the row or vertical screen
position. Each high resolution dot is specified by column and row screen
coordinates:

or
HPLOT COLUMN,ROW

HPLOT 120,20 (column 120 and row 20)

After the screen coordinates have been read, the dots are displayed
(lines 130-150). After the dots are displayed, and each time the switch is

engaged (line 180), line 230 is used to draw a line from each pair of
coordinates. Thus, the first pair of coordinates are 120 and 20, and the

134

second pair of coordinates are 90, 140. Therefore, the first time the switch
is engaged, a line is drawn from 120,20 to 90,140 or:

HPLOT 120,20 TO 90,140

Because the coordinates are lagged each time a line is drawn, the
variable LN is used to specify the beginning and ending point of each line.
When the program is first run, M(1,1)=120, M(1,2)=20, M(2,1)=90 and
M(2,2)=140. For examplk, when LN is 1, a line is drawn from 120,20 to 90,140:

230 HPLOT M(LN,1), M(LN,2) TO M(LN+1,1),M(LN+1,2)

After all the lines have been drawn, the screen is cleared and the dots re-
displayed. To modify the program, change the DATA statements to draw a
different shape or pattern.

10 REM DOT-TO-DOT
20 REM
30 DIM M(100,2)
40 ONERR GOTO 100
50 N = 1
60 FOR K = 1 TO 2
70 READ M(N,K): NEXT K
80 N N+1
90 GOTO 60
100 POKE 216,0: N = N-1
110 HOME
120 HGR
130 FOR K = 1 TO N
140 HPLOT M(K,1), M(K,2)
150 NEXT
160 HCOLOR=7
170 IF PEEK(-16287) > 127 THEN 170
180 IF PEEK(-16287) > 127 THEN 210
190 IF PEEK(- 16384) = 155 THEN 250
200 GOTO 180
210 LN = LN+1
220 IF LN > N-1 THEN LN = 0: GOTO 120
230 HPLOT M(LN,1),M(LN,2) TO M(LN+1,1),M(LN+1,2)
240 GOTO 170
250 POKE -16368,0
260 TEXT: HOME
270 EX--
280 DATA 120,20
290 DATA 90,140
300 DATA 200,70
310 DATA 60,7C
320 DATA 180,40
330 DATA 120,20

To create a square around the star add lines 331 through 335:

331 DATA 200,20
332 DATA 200,140
333 DATA 60,140
334 DATA 60,20
335 DATA 120,20

Or to draw a square delete lines 280 through 330 and modify line 335:

DEL 280,330
335 DATA 200,20

135

Creating High-resolution Graphics

The following program illustrates how high-resolution graphics can be

used to draw geometric shapes:

10 REM HIRES SHAPES
20 REM
30 HOME
40 Y = 60: X = 100
50 HGR
60 HCOLOR = 7
70 GS = GS+1: IF GS > 4 THEN GS = 1
80 IF PEEK(-16287) > 127 THEN 80
90 IF PEEK(-16287) > 127 THEN 120
100 IF PEEK(-16384) = 155 THEN 150
110 GOTO 90
120 CALL 62450
130 ON GS GOSUB 180,210,240,270
140 GOTO 60
150 POKE -16368,0
160 TEXT: HOME
170 END
180 FOR K = 1 TO 60
190 HPLOT X,Y+K TO X+60,Y+K
200 NEXT K: RETURN
210 FOR K = 1 TO 30
220 HPLOT X+15,Y+15+K TO X+45,Y+15+K
230 NEXT K: RETURN
240 FOR K = 1 TO 60
250 HPLOT X+20,Y+K TO X+40,Y+K
260 NEXT K: RETURN
270 FOR K = 0 TO 23
280 HPLOT X+30-K,70+K TO X+30+K,70+K
290 NEXT K: RETURN

To change the color of the shapes, reset HCOLOR in line 60:

60 HCOLOR=2

Each time the switch is engaged, line 130 is used to call a subroutine

to draw a geometric shape For example, when GS is 1, control is sent to the

subroutine beginning in line 180; when GS is 2, the subroutine beginning in
line 210 is called; when GS is 3, the subroutine in line 240 is called; and

when GS is 4, the subroutine beginning in line 270 is called.

The number of shapes can be increased by changing lines 70 and 130, and

then adding several additional subroutines:

70 GS = GS+1: IF GS > 7 THEN GS = 1

130 ON GS GOSUB 180,210,240,270,300,330,360
300 FOR K = 1 TO 60
310 HPLOT X,Y+K TO X+K,Y+K
320 NEXT K: RETURN
330 FOR K = 43 TO 0 STEP - 1
340 HPLOT X+30-K,93-K TO X+30+K,93-K
350 NEXT K: RETURN
360 FOR K = 0 TO 43
370 HPLOT X+30-K,50+K TO X+30+K,50+K
380 NEXT K: RETURN

136

High-resolution Discrimination

The DISCRIM program is a modification of the HIRES SHAPES application
task and involves the display of three shapes on screen at the same time for
each item. Two of the shapes are the same and one is different. The program
randomly selects the correct shape, the position of the correct shape and the
incorrect alternatives. Following a correct response, the color of the scan
cursor is changed. Items are presented until the Esc key is pressed.

10 REM DISCRIM
20 REM
30 HOME
40 Y = 40: X = 18
50 HGR
60 HCOLOR=7
70 RC = INT (RND(1)*7+1)
80 RI = INT (RND(1)*7+1)
90 IF RI = RC THEN 80
100 RP = INT (RND(1)*3+1)
110 FOR PL = 1 TO 3
120 GS = RI: IF RP = PL THEN GS = RC
130 IF PL = 2 THEN X = 108
140 IF PL = 3 THEN X = 198
150 ON GS GOSUB 470,500,530,560,590,620,650
160 NEXT PL
170 SP = 40: P = 1
180 HCOLOR=7
190 FOR L = 0 TO 9
200 HPLOT SP,115+L TO SP+16, 115+L: NEXT L
210 FOR D = 1 TO 100
220 IF PEEK (-16287) > 127 THEN 260
230 IF PEEK (-16384) = 155 THEN 440
240 NEXT D: GOSUB 380
250 GOTO 180
260 IF RP = P THEN 290
270 GOTO 40
280 GOSUB 380
290 HCOLOR=2
300 FOR L = 1 TO 8
310 SP = 40: IF RP = 2 THEN SP = 130
320 IF RP = 3 THEN SP = 220
330 FOR L= 0 TO 9
340 HPLOT SP,115+L TO SP+16,115+L: NEXT L
350 FOR L = 1 TO 1500: NEXT L
360 GOSUB 380
370 GOTO 40
380 HCOLOR=0
390 FOR L = 0 TO 9
400 HPLOT SP,115+L TO SP+16,115+L: NEXT L
410 SP = SP+90: IF SP > 230 THEN SP = 40
420 P= P+1: IF P> 3 THEN P= 1
430 RETURN
440 POKE -16368,0
450 TEXT: HOME
460 END
470 FOR K = 1 TO 60
480 HPLOT X,Y+K TO X+60,Y+K
490 NEXT K: RETURN
500 FOR K = 1 TO 30
510 HPLOT X+15,Y+15+K TO X+45,Y+15+K
520 NEXT K: RETURN

137

530 FOR K = 1 TO 60
540 HPLOT X+20,Y+K TO X+40,Y+K
550 NEXT K: RETURN
560 FOR K = 0 TO 23
570 HPLOT X+30-K,70+K TO X+30+K,70+K
580 NEXT K: RETURN
590 FOR K = 1 TO 60
600 HPLOT X,Y+K TO X+K,Y+K
610 NEXT K: RETURN
620 FOR K = 43 TO 0 STEP -1
630 HPLOT X+30-K,93-K TO X+30+K,93-K
640 NEXT K: RETURN
650 FOR K = 0 TO 43
660 HPLOT X+30-K,50+K TO X+30+K,50+K
670 NEXT K: RETURN

The subroutines for the seven possible shapes used in the program are
contained in lines 470, 500, 530, 560, 590, 620 and 650.

To present the shapes in sequential order (e.g., for the first item, the
first shape is treated as the correct answer; for the second item, the second
shape is the correct answer, etc), add lines 65 and 66 and modify line 70.
Although the shapes are presented in sequential order, the location of the
correct shape displayed on screen is still randomly determined. Shape #1
might be the correct answer, but this can appear as either the first, second
or third item alternative.

65 RX = RX+1
66 IF RX > 7 THEN RX = 1
70 RC = RX

Add a "click" to each scan by using CHR$(7):

215 PRINT CHR$(7)

Following a correct response, not a great deal happens. Program feedback
can be added by having the correct shape displayed (if selected) in the seven
high-resolution colors on a sequential basis following a correct response:

145 IF RP = PL THEN XC = X: YC = Y

290 X = XC: Y = YC
300 FOR C = 1 TO 7
310 HCOLOR=C
320 ON RC GOSUB 470,500,530,560,590,620,650
310 NEXT C
320

Memory Move

As previously discussed, there are occasions when it is necessary to
change the starting memory location of a BASIC program. If a program is
fairly large (approximately 25 sectors or greater) and uses high resolution
graphics, use the brief program described in the last section of Chapter 2 or
the MEMORY MOVE program described in Chapter 3 to reset the beginning memory
location of BASIC to either 16384 (if only page 1 of high-resolution graphics
is used) or to 24576 (if both page 1 and 2 of hig).-resolution graphics are
used).

For example, if a large program uses high-resolution graphics so that the
program extends from 2049 and beyond 81.91 (and into high-resolution graphics
memory space), that part of the program extending into graphics space will be

138

r.,

lost. This problem is solved by running the following program so that BASIC
begins immediately after high-resolution (page 1) graphics space:

NEW
10 START = 16384: POKE START - 1,0
20 POKE 103, START - INT(START/256) * 256
30 POKE 104, INT (START/256)

If both pace 1 and page 2 of high-resolution graphics are being used, set
START to 24576 in line 10.

After the above BASIC starting address memory move program is run, check
to make sure the starting memory location for BASIC has been changed:

PRINT PEEK(103) + PEEK(104) * 256
16384

In the above situation when the application is loaded into memory, the
beginning memory location starts immediately above high-resolution page 1

graphics. As a result there is no overlap between the BASIC program and
graphics memory.

If there is a problem involving memory size and high-resolution graphics,
first consider using the secondary page high-resolution picture buffer when
extends from 16384 to 24575. This is easily accomplished by simply using HGR2
instead of HGR.

Shape Tables
In addition to using HPLOT to draw high-resolution shapes, many programs

use what are called shape tables. Creating a shape table from scratch is no
easy task, and requires considerable experience and the BASIC Programming
Reference Manual (pages 92 to 100) at the ready. However, shape tables do
provide an opportunity to manipulate screen shapes in terms of size and screen
position.

The SHAPE TABLE program shown below is intended to demonstrate several
ways in which shapes can be manipulated on screen. When the program is first
run, the shape is defined and stored in memory in lines 30 to 80. Each time
the switch is engaged, the shape (a simple square) is enlarged. After 30
repetitions, the screen color is changed and the task repeated.

The key to the program is line 200 in which the shape is drawn at the
specified location.

200 DRAW 1 AT C,R

In line 170, SCALE determines the size of the shape (which is a value
between 0 and 255).

10 REM SHAPE TABLE
20 REM
30 FOR K = 1 TO 13
40 READ A
50 POKE 767+K, A: NEXT K
60 DATA 1,0,4,0,36,36,45,45,54,54,63,63,0
70 POKE 232,0
80 POKE 233,3
90 HOME: HGR
100 HC = 3

139

110
120
130
140

HCOLOR=HC
IF PEEK(-16287) > 127 THEN
IF PEEK(-16287) > 127 THEN
IF PEEK(-16384) = 155 THEN

120
160
270

150 GOTO 130
160 S = S+1
170 SCALE=S
180 C = C+5
190 R = R+5
200 DRAW 1 AT C,R
210 IF S < 30 THEN 120
220 S = 0: C = 0: R = 0
230 HC = HC+1
240 IF HC = 4 OR HC = 7 THEN HC = HC+1
250 IF HC > 7 THEN HC = 1

260 GOTO 110
270 POKE -15368,0
280 TEXT: HOME
290 END

The clarity of the shape can be enhanced by printing the same shape side-

by-side:

205 DRAW 1 AT C+1,R

The position of the shape can be altered by using the ROT instruction.
ROT is a value between 0 and 64 so that a ROT value of 16 rotates the shape
90 degrees, a value of 32 rotates the shape 180 degrees, etc.

100
110
160 SCALE=12
170 HCOLOR=0
180 XDRAW 1 AT 120,80
190 R = R+8: IF R > 64 THEN R = 0
200 ROT=R
210 HCOLOR=3
220 DRAW 1 AT 120,80
230
240
250
260 GOTO 120

Although shape tables can be entered directly into memory as shown above,

many programs first recall the shape table from disk. Instead of lines 30
through 60 above, the following can be used to load a shape table from disk:

30 PRINT CHR5(4);"BLOAD SHAPE TABLE"
70 POKE 232,0
80 POKE 233,3 (starting address of shape table)

The two POKE statements in lines 70 and 80 indicate to the computer where

the shape table begins. Whenever a shape table is used, memory locations
always indicate just where in memory the shape table is located. In this

case, the shape table begins at address 768. This is probably going to be as
clear as mud, but the values poked in lines 70 and 80 (0 and 3) represent
decimal memory location 768 or (3 X 256) + (0 X 0). The starting location of
a shape tables signifies the number of shapes contained in the table.

If using shapes from an already defined shape table, determine how many
shapes are in the table by first loading the table, interrupting the program,
and then peeking the value in the first shape table memory location.

140

A = PEEK(43634) + PEEK(43635) * 256 (starting shape table address)
PEEK(A) (number of shapes)

The following program is a useful shape table utility that can be used
to review all the shapes comprising a shape table. The program automatically
sets variable A to the shape table starting address in line 90. Lines 110 and
120 converts this starting decimal address to fit the allowable register value
size, and then stores these values in registers 232 and 233. The first
location of every shape table indicates the number of shapes in the table.
In the below program variable A is peeked and the value returned is the total
number of shapes in the table which is then stored in stored in variable MX
(see line 130).

10 REM SHAPE TABLE REVIEW
20 REM
30 HOME
40 VTAB 2: HTAB 8
50 PRINT "SHAPE TABLE REVIEW UTILITY"
60 VTAB 8: INPUT "TABLE NAME: ";N$
70 IF N$ = "" THEN 340
80 PRINT CHR$(4);"BLOAD "N$
90 A = PEEK(43634) + PEEK(43635) * 256
100 T = INT(A/256)
110 POKE 232,A-T*256
120 POKE 233,T
130 MX = PEEK(A)
140 HOME: HGR
150 VTAB 21: PRINT "TOTAL SHAPES = "MX
160 HCOLOR=3
170 NS = NS+1: IF NS> MX THEN NS = 1
180 IF PEEK(-16287) > 127 THEN 180
190 IF PEEK(-16287) > 127 THEN 250
200 KY = PEEK(-16384): IF KY = 155 THEN 340
210 POKE -16368,0
220 IF KY = 160 THEN 320
230 IF KY > 127 THEN 250
240 GOTO 190
250 HGR
260 SCALE=1
270 C = 75: R = 100
280 VTAB 23
290 PRINT "SHAPE # = "NS"
300 DRAW NS AT C,R
310 GOTO 170
320 TEXT
330 NS = 0: GOTO 30
340 POKE -16368,0
350 TEXT: HOME
360 VTAB 7
370 PRINT "FILE = "N$
380 PRINT "STARTING ADDRESS = "A
390 L = PEEK(43616) + PEEK(43617) * 256
400 PRINT "FILE LENGTH = "L
360 END

All of the routines presented in this manual use the same procedure for

reading shape tables. If desired, a variation of this routine could be used
by deleting line 100, and then peeking the starting location of the table
directly into locations 232 and 233:

100
110 POKE 232,PEEK(43634)

141

120 POKE 233,PEEK(43635)

All of the font applications have included a routine which identifies the
starting point, and then pokes the appropriate values in registers 232 and
233 so that any ASCII font set can be used. If the starting location of the
shape table and the number of shapes within the table are known, the shape
input routine can be abbreviated as follows:

80 PRINT CHR$(4);"BLOAD "N$
90
100
110 POKE 232,PEEK(43634)
120 POKE 233,PEEK(43635)
130 MX = PEEK(24576)

To use the SHAPE TABLE REVIEW program, insert the disk containing the
shape table and enter the name of the shape table file following the prompt
TABLE NAME and then press RETURN. High-resolution graphics mode is set and
the number of shapes in the table displayed at the bottom of the screen. If

there are 5 shapes in the table, each shape appears after the switch is
engaged, in sequential order, before the first shape is displayed again. This
program automatically determines the number of shapes in the file.

SHAPE TABLE REVIEW UTILITY

TABLE NAME: LASCII

If the name of the shape table is not known, check the disk catalog for
binary files (e.g., B 005 SHAPE NAME) which are used to store shape tables.
On the program disk, the two shape table files are recorded as

B 015 LASCII
B 010 RASCII

The program disk contains a large ASCII character font set entitled
LASCII which can be accessed using the SHAPE TABLE REVIEW program. The actual
shapes contained within this shape table begin with shape 30. The first 29
entries are essentially empty and correspond to ASCII Control+Key keyboard

combinations. Shape 30 is an underline which can be used for scanning, and

shape 31 is a solid block which can be used with various single switch

applications.

Other characters in the LASCII file correspond to the usual ASCII
characters. Thus, the number 0 corresponds to shape 48, the letter A to shape

65, and the lowercase a to 97.

The above program displays each shape contained in the table at screen
location C,R (see line 300). The shapes could be displayed so that all appear
on the screen at the same time for comparison purposes by the following
modifications:

165 V = 20
166 HGR
250 REM
270 C = C+30: IF C > 250 THEN C = 30: R = R+40

142

4 00)
f -)

The increments for C and R will depend on the size of the shapes. The above
settings display eight shapes across the screen using four screen rows (i.e.,

the R and C settings create an 8X4 high-resolution screen matrix).

Saving Shape Tables on Disk

To save a shape table on a different disk, run the SHAPE TABLE REVIEW
program. After the shapes have been read and the number of shapes displayed
at the bottom of the screen, exit the program by pressing the Escape key. The
starting address and the length of the file is then shown:

FILE = LASCII
STARTING ADDRESS = 24576
FILE LENGTH = 3404

If the value is 24576, insert the disk on which the shape table is to be
copied, and then save the table as follows:

BSAVE FILE NAME, A24576, L3404

The starting address and file length already determined are then entered after
the A and L and the file can now be saved on a different disk.

The BLOAD statement can also be used to load a shape table at an address
other than the address used to originally save the program. If the original
address is 24576, but a starting address of 30000 is wanted, the following

would be used:

BLOAD FILE NAME, A30000

The above is useful when a binary file is loaded into a portion of memory that

is used by a program. If the starting address is 2049 for a binary program,
and the basic program begins at 2049 (which all do unless otherwise set), the
binary program loaded at 2049 will clobber the BASIC program. This can be
resolved by loading the binary program at an address not used by the program

(or graphics). The program can now be saved at the new address (where the

length of the file is determined as previously shown):

BSAVE FILE NAME, A30000,L3404

The next section provides additional information concerning how to save

binary programs using the BSAVE instruction.

Shape Table Maker

Shapes are an important part of Applesoft and single switch programming.
Once a shape table has been created, the shapes are easily manipulated on the
screen by means of the DRAW, XDRAW, ROT (rotation) and SCALE commands. Based

on the directions provided in the Applesoft BASIC manual, making a shape table
might seem to be an extremely complicated task. And if you go about
constructing shapes without a little programming help, it will be!

Although creating a shape table does require a modest amount of planning

(and a little trial and error programming), the program shown below provides

a relatively easy method for creating up to N number of individual shape
tables and how to store the tables on disk. The SHAPE TABLE MAKER program is
certainly not as involved as a commercial shape table maker, but it does offer

a simple and inexpensive means for creating and storing shape tables on disk.

10 REM SHAPE TABLE MAKER

143

20 REM
30 HOME
40 BA = 24576
50 READ N
60 POKE BA,N
70 POKE BA+1,0
80 SP = SP+1
90 S = N*2+C+2
100 IF S > 255 THEN 140
110 POKE BA+SP*2,S
120 POKE BA+SP*2+1,0
130 GOTO 170
140 T = INT(S/256)
150 POKE BA+SP*2+1,T
160 POKE BA+SP*2,S-T*256
170 SD = N*2+BA+1
180 READ X
190 IF X = 9 THEN 320
200 READ Y
210 IF Y = 9 THEN Z = 1: Y = 0: YT = 0: GOTO 270
220 READ YT
230 IF YT = 9 THEN Z = 1: YT = 0: GOTO 270
240 IF YT > 3 THEN YX = YT+10: YT = 0
250 VTAB 23: HTAB 15
260 PRINT "SHAPE = "SP
270 P = YT*64+Y*8+X
280 C = C+1
290 POKE SD+C,P
300 IF YX > 9 THEN X = YX-10: YX = 0: GOTO 200
310 IF Z = 0 THEN 180
320 Z = 0
330 C = C+1
340 POKE SD+C,0
350 IF SP = N THEN 370
360 GOTO 80
370 T = INT(BA/256)
380 POKE 232,BA-T*256
390 POKE 233,T
400 HGR: COLOR=7
410 SCALE=1
420 GET D$: D=VAL(D$)
430 CALL -3086
440 IF D$ = CHR$(27) THEN 490
450 DX = DX+1
460 IF DX > N THEN DX = 1
470 DRAW DX AT 80,80
480 GOTO 420
490 TEXT: HOME
500 PRINT "START = "BA
510 PRINT "LENGTH = "SD+C+1-BA
520 END
530 REM
540 REM DATA STATEMENTS
550 REM
560 DATA 3
570 DATA 4,1,4,1,4,1,4,1,4,1,4,1,4,1,9
580 DATA 6,1,6,1,6,1,6,1,6,1,6,1,6,1,9
590 DATA 5,5,5,5,5,5,5,5,5,5,5,5,9

To use SHAPE TABLE MAKER, first enter the number of shapes to be created
in the DATA statement in line 560. In this example, three shapes are created.
Next, use a DATA statement for each shape to be created. Each shape should

144

e e

end with a 9 to indicate the end of that particular shape.

The numeric values in the DATA statements are the instructions for
drawing high-resolution dots and moving to different screen locations. The
values 0 to 3 are used to move without plotting a high-resolution dot. The
values 4 through seven are used to plot a high-resolution dot and move. The
values 6666 in sequence plots a dot, moves vile space down, and repeats this

procedure four times. The values 6,6,6,6,5,5,5,5,4,4,4,4,7,7,7,7 produces a
box comprised of four downward dots, four dots draw from left to right, four
upward dots, and then fours dots drawn from right to left.

The following indicates the values associated with plotting or not
plotting a dot, and the direction of each subsequent move:

DON'T PLOT PLOT

(up) (up)

0 4

(left) 3 1 (right (left) 7 5 (right)
2 6

(down) (down)

Consider the DATA statement in line 570:

570 DATA 4,1,4,1,4,1,4,1,4,1,4,1,4,1,9

The first value is 4 and plots a high resolution dot and moves one
position up. The next value is a 1 and moves one position to the right
without plotting a dot. The series of 4's and l's is used to plot a high-
resolution line in an upward direction at approximately a 45 degree angle.

To see the shapes created using the DATA statements, run the program and

then enter the number (1, 2 or 3 for the above program) corresponding to the

shape. The sample DATA statements in the above program draw the following

shapes:

#1 = /

#2 = \

#3 =

When the program is run, entering a shape table number displays the
corresponding shape. To see the shapes contained in the program without
clearing the screen between shapes, delete line 430.

430

When plotting a shape, be sure not to use two consecutive 0's because
this will be entered as a 0 which signifies the end of the shape definition.
With a little planning this should not be much of a problem. Also, because

c,f the way shape moves are stored, a 0 or upward move without a plot, is

sometimes ignored. If this happens, you might need to move either left or

right before moving upward.

When the SHAPE TABLE MAKER program is run, the number of each shape is

shown at the bottom of the screen as it is being read by the program. The

key to the program is line 270 where combinations of shape moves are
transformed to decimal equivalents. If tne first two moves of a shape are 4
and 1, this would be stored as 12 (or 1X8 + 4); and if three moves are 3, 3

and 3, this would be stored as 219 or (3X64 + 3X8 + 3).

145

When all the shapes have been loaded, high-resolution graphics is set and
the shapes are displayed in sequential order following each key press (i.e.,

simply press the RETURN key and each shapes will appear in sequential order).
To add more shapes to the above program, remember to change the value in line

560. The following illustrates how a 4th shape (the letter N) can be added
to the program.

430 CALL-3086
560 DATA 4
600 DATA 6,6,6,6,6,6,4,4,4,4,1,6,1,6,1,6,

1,6,4,4,4,4,4,4,4,9

And this shape is the letter A:

560 DATA 5
610 DATA 1,1,5,2,3,3,5,1,5,2,3
620 DATA 3,3,3,5,1,1,1,5,2,3,3,3,3,3
630 DATA 5,1,1,1,5,2,3,3,3,3,3
640 DATA 5,5,5,5,5,2,3,3,3,3,3
650 DATA 5,1,1,1,5,2,3,3,3,3,3
660 DATA 5,1,1,1,5,9

To experiment with he SCALE command, reset SCALE in line 410:

410 SCALE=5

Saving Completed Shape Tables

After the shapes have been entered, run the program to see if the shapes

resembled the intended images. If all is well, press ESC and the starting
address and length of the table appears on screen:

START = 24576
LENGTH = 31

As is the case when using the SHAPE TABLE REVIEW program, shape tables
created via the SHAPE TABLE MAKER are saved by specifying the starting address
and the length of the file and then saving that segment of memory containing
the shape information as a binary file. As the above program is now written,
the shape table begins in address 24576 but this can be changed to meet
specific programming needs. Select an appropriate name for the shape table,
and then enter the name, starting address and table length. If the name is
SHAPE.M, the table would be saved as:

BSAVE SHAPE.M, A24576, L31

After defining the shapes, and determining that the shapes look like the

shapes (or "sort of like" the shapes) wanted, save the shape on disk. The

SHAPE TABLE REVIEW program can be used to access and review the shapes
created.

High-resolution Fonts

A frequent request of those involved with single switch software is a

desire to have characters larger than the usual ASCII character set

(pronounced As-Key and is an acronym for American Standard Code for

Information Interchange). Very often this is useful for students with visual

problems and/or to increase attention. The program disk contains two large

146

r

font character sets. These character sets are contained in the binary files
LASCII and RASCII. This section describes several program that can access and
use the large font sets.

Normal screen characters are displayed by what is equivalent to a 7 by
5 high-resolution dot matrix. In other words, screen characters are
approximately 7 high-resolution dots high and 5 high-resolution dots wide.
The character in LASCII are 14 dots high and 10 dots wide. To review the
character set run the SHAPE TABLE REVIEW program and then enter LASCII after
the prompt.

Large Font Applications

DISPLAY FONT: This program illustrates how the LASCII character set is
accessed and individual font characters displayed. When the program is run,
a character font is displayed. When tne switch is engaged, feedback is given
by a series of beeps (line 190) and the character is displayed using the seven
high- resolution color codes. The LASCII characters are displayed at screen
location 125 (column or horizontal position) and 50 (row or vertical position)
by means of the DRAW statements in lines 120 and 200.

10 REM DISPLAY FONT
20 REM
30 HOME
40 PRINT CHBS(4);"BLOAD LASCII"
50 A = PEEK(43634) + PEEK(43635) * 256
60 T = INT (A/256)
70 POKE 232,A-T*256
80 POKE 233,T
90 C = INT(RND(1)*26+65)
100 HGR: HCOLOR=7
110 SCALE=1
120 DRAW C AT 125,50
130 IF PEEK(-16287) > 127 THEN 130
140 IF PEEK(-16287) > 127 THEN 170
150 IF PEEK(-16384) = 155 THEN 240
160 GOTO 140
170 FOR CL = 1 TO 7
180 HCOLOR=CL
190 PRINT CHR$(7)
200 DRAW C AT 125,50
210 FOR D = 1 TO 200: NEXT D
220 NEXT CL
230 GOTO 90
240 POKE -16368,0
250 TEXT: HOME
260 END

As shown above, the large font character set is loaded into memory in
line 40. The variable A indicates the starting address where the LASCII

binary file is loaded (A = 24576). The number of shapes in the file is
determined by PRINT PEEK(A). The variable C is a random number ranging from
65 to 90 which corresponds to the shapes A to Z. To use the DISPLAY FONT
program to present the characters 0 to 9, line 90 is set to

90 C = INT(RND(1)*10+48)

Lower-case letters are displayed by setting C as follows:

90 C = INT(RND(1)*26+97)

147

Following a switch response, additional feedback could be given by
displaying the target font character at various screen locations by

incorporating the XDRAW statement:

170 FOR K = 1 TO 25
175 H = INT(RND(1)*200+25)
176 V = INT(RND(1)*100+25)
180
200 DRAW C AT H,V
215 XDRAW C AT H,V
220 NEXT K

Additional modifications include changing the HCOLOR setting in line 100,

and experimenting with the ROT instruction which rotates shapes increments

from 0 (no rotation) to 64 (380 degrees rotation):

170 FOR K = 1 TO 4
175
176
195 HCOLOR=0
200 DRAW C AT 125,50
214 ROT=16*K
215 XDRAW C AT 125,50
220 NEXT K

The shape values in the LASCII file range from 30 to 126. Shapes 1 to

29 correspond to Control+Key combinations and are essentially "empty" shapes.
The complete list of LASCII shapes is as follows:

SHAPE # CHARACTER

30
31
32 SPACEBAR
33 1

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48 0
49 1
50 2
51 3
52 4
53 5
54 6

148

w
o rn

v ii
o

r : 4
C

.) A
 N

 I 44
1- 1hp4A

A
Z

O
W

O
IP4C

O
H

b
>

4>
+

N
/r,<

I-
IdA

 t1b 0) 44 13
ri

tO
 N

 03 01 0 r-I
N

M
 'di 111 tp N

 C
O

 01 0 I-1 C
N

1
l/0 N

 C
O

 01 0 T
4

N
M

 d U
l lG

 r C
O

 01 0 r
I C

4 el
4) l- C

O
 01 0 1-I C

1
Ill

Iti111111V
itI1

%
. 0l0l0tD

43t0t0lD
lO

N
N

N
N

N
N

N
N

N
N

O
C

O
O

O
O

O
O

O
O

U
O

O
Irnrnrnrnrnrnrnrn0 1 0 C

o 0 0 C
o 0 0r-i

107
108 1
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124 J

125
126

SWITCH FONT: Before using the SWITCH FONT program, set N$ to the
student's name in line 70. The SWITCH FONT program first reads a series of
words from DATA statements beginning in line 590. After the N words have been
read, the Echo TEXTALKER program and the LASCII character set are loaded into

memory. The program is currently set to present the words sequentially in

line 200, where RW is set to X, and X specifies each of the items from 1 to

N.

The words are shown using the LASCII character set by means of the
subroutine beginning in line 310. To use this subroutine the column or
horizontal position for each letter is set by HX, and the row or vertical
position of each word displayed is indicated by V (V is sot to 75 in line 50).

In line 270 the starting horizontal position is adjusted for the length of the
string being presented so that the string contained in W$ is centered.

The word is displayed on the screen until the switch is engaged. When the
switch is closed, the message "Very good" followed by the students name is
presented via the Echo. This is followed by the message "The word is", arc
then the word displayed. The word is then shown on screen using the various
high-resolution colors.

After response feedback has been given and the screen is cleared, there

is a delay of approximately 3 seconds. If the switch is engaged while in this
loop, the loop is re-initiated. This was installed to emphasize the need to
wait until a screen word appeared before engaging the switch. The length of
the delay loop is controlled by variable ST in line 60.

Although the task does not demand or measure understanding of the words

presented, an attempt should be made to develop an association between a
single switch response and program feedback. When working with a student,
provide ample verbal cues. For example, when the screen clears say, "Now wait

for the word. Watch the screen and wait for the word."

10 REM SWITCH FONT
20 REM
30 DIM W$(50), W(50)
40 D$ = CHR$(4): G$ = CHR$(5)

150

50 V = 75
60 ST = 15C
70 N$ = "JANET"
80 ONERR GOTO 110
90 N = N+1
100 READ W$(N): GOTO 90
110 POKE 216,0: HOME
120 N = N-1
130 PRINT D$; "BRUN TEXTALKER"
140 PRINT D$;"BLOAD LASCII"
150 A = PEEK(43634) + PEEK(43635) * 256
160 T = INT (A/256)
170 POKE 232,A-T*256
180 POKE 233,T
190 FOR X = 1 TO N
200 RW = X: GOTO 240
210 RW = INT(RND(1) * N + 1)
220 IF W(RW) = 1 .TBEN 210
230 W(RW) = 1
240 HGR: HCOLOR=7
250 SCALE=1
260 W$ = W$(RW)
270 HX = 130-10*LEN(W$)/2
280 H = HX
290 GOSUB 310
300 GOTO 380
310 FOR L = 1 TO LEN(W$)
320 C$ = MID$(W$,L,1)
330 C = ASC(C$)
340 DRAW C AT H,V
350 H = H+13
360 NEXT L
370 RETURN
380 IF PEEK(-16287) > 127 THEN 410
390 IF PEEK(-16384) = 155 THEN 560
400 GOTO 380
410 PRINT G$ "T VERY GOOD "N$" "G$"0"
420 FOR D = 1 TO 500: NEXT D
430 PRINT G$"T THE WORD IS "W$" "G$"0"
440 FOR CL = 1 TO 7
450 H = HX
460 HCOLOR=CL: GOSUB 310
470 FOR D = 1 TO 200: NEXT D
480 NEXT CL
490 FOR D = 1 TO 2000: NEXT D
500 HGR
510 FOR D = 1 TO ST
520 IF PEEK(-16384) = 155 THEN 560
530 IF PEEK(-16287) > 127 THEN 510
540 NEXT D
550 NEXT X
560 POKE -16368,0
570 TEXT: HOME
580 END
590 DATA SINGLE SWITCH,READING,MATH,YES,GREAT!

Each time a character is displayed, H is incremented in line 350 by 13

to accommodate the next character and to provide spacing between characters.
The between-letter spacing can be decreased by changing this line. Because
each character is 10 dots wide, the smallest increment should be 11:

350 H = H+11 (small character spacing)

151

350 H = H+15 (wide character spacing)

An Echo prompt can be added to the delay routine so that during the pause
phase of the program, the Echo prompt WAIT FOR THE WORD is given:

530 IF PEEK(-16287) > 127 THEN 535
531 GOTO 540
535 PRINT G$"T WAIT FOR THE WORD "G$"0"
536 GOTO 510

To present the words in random order delete line 200. To use SWITCH FONT
with a Touchwindow (and this is how the program was originally used), change
line 380 as follows:

380 IF PDL(0) > 5 THEN 410

When using this program with a Touchwindow, be sure that the device is
connected or the program will assume that a response has been made each time
line 380 is executed.

FONT MATCH: The FONT MATCH program selects two characters and displays
both at the same time. If the characters are the same and a switch is
engaged, a series of beeps is given to indicate a correct response. In the
LASCII shape table, the letter A corresponds to the shape value 65 and the

letter Z to a shape value of 90.

10 REM FONT MATCH
20 REM
30 HOME
40 HGR
50 HCOLOR=7
60 SCALE=1
70 PRINT CHR$(4);"BLOAD LASCII"
80 A = PEEK(43634) + PEEK(43635)*256
90 T = INT(A/256)
100 POKE 232,A-T*256
110 POKE 233,T
120 FOR X = 1 TO 10
130 Si = INT(RND(1)*26+65)
140 S2 = INT(RND(1)*26+65)
150 IF RND(1) > .5 THEN S1 = S2
160 DRAW S1 AT 125,50
170 DRAW S2 AT 125,90
180 FOR D = 1 TO 500
190 IF PEEK(-16287) > 127 THEN 220
200 NEXT D
210 GOTO 270
220 IF Si < > S2 THEN 250
230 FOR L = 1 TO 7
240 PRINT CHR$(7): NEXT L
250 FOR L = 1 TO 2000: NEXT L
260 IF PEEK(-16287) > 127 THEN 260
270 HGR
280 FOR L = 1 TO 1000: NEXT L
290 NEXT X
300 TEXT: HOME
310 END

A routine can be added that results in the re-presentation of items
following an incorrect response:

152

r

155 HGR
156 FOR D = 1 TO SOO: NEXT D
205 IF S1 = S2 THEN 155
220 IF S1 < > S2 THEN 155

Lower-case letters can be used by changing lines 130 and 140 as follows:

130 Si = INT(RND(1)*26+97)
140 S2 = INT(RND(1)*26+97)

And the numbers 0 through 9 can be used by the following changes:

130 S1 = INT(RND(1)*10+48)
140 S2 = INT(RND(1)*10+48)

The program is easily transformed into a nonverbal task by specifying
non-letter characters in the LASCII file. The following statements generate
the values 4, 5, 6 and 7 which correspond to the keyboard characters #, $, %

and &.

130 S1 = INT(RND(1)*4+35)
140 S2 = INT(RND(1)*4+35)

The next set of statements generate the values 9, 10, 11, AND 12 which
correspond to the keyboard characters (,) *, and +.

130 S1 = INT(RND(1)*4+40)
140 S2 = INT(RND(1)*4+40)

To modify the program so that a Touchwindow response indicates a match,

line 190 is changed as follows:

190 IF PDL(0) > 25 THEN 220

FONT WRITER: The FONT WRITER program can be used to display all the

large font characters. As shown in the program listing, this program begins

by loading the Echo TEXTALKER program. If an Echo is not available, insert
a GOTO statement in line 35 to by-pass the TEXTALKER program.

35 GOTO 70 (Insert if an Echo is not being used)

However, the FONT WRITER is best used with an Echo. The reason for this
is that whenever the switch is engaged, the information shown on screen is
presented via the Echo. The program could be used by entering the student's
name and then having the student engage the switch to activate the Echo.
Additional letters, words, phrases or sentences could then be added and used

in a similar fashion.

The FONT WRITER is an extremely easy-to-use word processor which combines

large screen characters with synthesized speech. One important limitation,
however, is that the screen displays a limited amount of information (17 rows

by 5 columns of LASCII characters). Although the program could be modified
to print out text and even to file text, be aware that the high-resolution
graphics does use a large chuck of memory so that possible program length is

limited.

10 REM FONT WRITER
20 REM
30 D$ = CHR$(4): G$ = CHR$(5)
40 PRINT D$;"BRUN TEXTALKER"
50 FOR L = 1 TO 1000: NEXT L
60 PRINT G$;"0"

153

70 HOME
80 PRINT D$:"BWAD LASCII"
90 A = PEEK(43634) + PEEK(43635) * 256
100 T = INT(A/256)
110 POKE 232,A-T*256
120 POKE 233,T
130 HGR
140 SCALE=1
150 H = 25: V = 25
160 HCOLOR=7: DRAW 30 AT H,V
170 IF PEEK(-16287) > 127 THEN 450
180 KY = PEEK(-16384): IF KY > 127 THEN 200
190 GOTO 170
200 POKE -16368,0
210 HCOLOR=0: DRAW 30 AT H,V
220 IF KY = 152 THEN S$ = "": GOTO 130
230 IF KY = 155 THEN 480
240 IF KY = 149 THEN 390
250 IF KY = 136 THEN 420
260 IF KY = 138 THEN V = V+25: GOTO 400
270 IF KY = 141 THEN H = 25: V = V+25: GOTO 400
280 IF KY = 139 THEN V = V-25: GOTO 430
290 DRAW 30 AT H,V
300 DRAW 31 AT H,V: DRAW 31 AT H,V+5
310 P = ((H-25) / 13 + 1) + (V - 25) / 25 * 17
320 IF P = 1 THEN L$ = " "z GOTO 340
330 L$ = LEFT$(S$,P-1)
340 R$ = MID$(S$,P +1,120)
350 S$ = L$ + CHR$(KY) + R$
360 IF KY = 160 THEN 380
370 HCOLOR=7
380 DRAW KY-128 AT H,V
390 H = H+13: IF H > 240 THEN H = 25: V = V+25
400 IF V > 125 THEN H = 25: V = 25
410 GOTO 160
420 H = H-13: IF H < 25 THEN H = 25: V = V-25
430 IF V < 25 THEN V = 25: H = 25
440 GOTO 160
450 PRINT
460 PRINT G$"T "S$" "G$"0"
470 GOTO 160
480 TEXT: HOME
490 END

The FONT WRITER program records the screen characters as a single string

by means of the string variable S$ (see line 350). After the ASCII equivalent

of a keyboard key has been recorded, the corresponding letter shape is
determined by subtracting 128 from variable KY (line 380). The current
position of the characters within this string is determined by the variable

P in line 310. When the switch is engaged, the S$ string is presented via the

Echo in line 460.

The FONT WRITER is especially useful for entering short phrases and
sentences, and then having the student engage the switch after the word or

phrase has been entered.
Following a response, the screen is cleared and the cursor returns to the

beginning position by pressing the Control+X key combination (see line 220).

FONT FEEDBACK: This application
components can be integrated into a
auditory and visual feedback following
comprised of a series of statements

illustrates how a variety of program
program that provides considerable
each switch response. The program is
(or single words) contained in DATA

154

I'30

statements beginning in line 930. The first statement indicates that message
that is displayed via the LASCII character set. The second statement is the
message gene..:ated by the Echo. Using corresponding statements allows for the
specification of Echo speech (see line 930).

When entering DATA statements, the first field is the font message or
word displayed by the monitor and the second field is synthesized by the Echo.

930 DATA "HELLO, SEAN!","HELLO, SHAWN!"

XXX DATA FONT FIELD, ECHO FIELD

Each DATA statement for the FONT FEEDBACK program must have two fields; the
two fields must be separated by a comma; and if a comma is contained within
a field, the field must be enclosed with quotation marks as shown in line 930.

Following a switch response, several notes are played, the message is

synthesized and then displayed in different colors. Before the next statement
is displayed, the switch device must be in an open position for approximately
three seconds.

Notice that at the bottom of the screen a decimal is displayed. This
corresponds to the up/down movement of the joystick. This was included to
provide information as to whether the student was exerting any downward

joystick movement, even though the movement might not have been sufficient

to close or activate the switch. In this way the variable resistance of the
joystick potentiometer provides information relating to the intensity of the

switch response.

The FONT FEEDBACK program was designed to integrate several feedback
systems into a single program. If used to primarily enhance reading skill,
consider replacing the "charge" subroutine with a REM statement in line 730.
There is a time when feedback is essential, and a time when too much feedback

can be overwhelming. One great advantage of BASIC software is that the amount
and type of feedback can be controlled.

The DATA statement information is presented sequentially. To present the
N messages or words in random order, delete line 490.

10 REM FONT FEEDBACK
20 REM
30 ST = 50
40 V = 75
50 FOR K = 1 TO 21
60 READ A
70 POKE 801+K,A
80 NEXT K
90 DATA 174,32,3,173,48,192,136,208,5,206,

33,3,240,6,202,208,245,76,34,3,96
100 GOTO 300
110 POKE 800,101
120 POKE 801,48
130 CALL 802
140 POKE 800,76
150 POKE 801,48
160 CALL 802
170 POKE 800,60
180 POKE 801,48
190 CALL 802
200 POKE 800,52
210 POKE 801,96
220 CALL 802

155

230 POKE 800,60
240 POKE 801,48
250 CALL 802
260 POKE 800,52
270 POKE 801,255
280 CALL 802
290 RETURN
300 DIM W$(50),W(50),E$(50)
310 D$ = CHR$(4): G$ = CHR$(5)
320 OMERR GOTO 350
330 N = N+1
340 READ W$(N), E$(N): GOTO 330
350 POKE 216,0: HOME
360 N = N-1
370 IF PEEK(999) = 99 THEN 420
380 POKE 999,99
390 PRINT D$;"BRUN TEXTALKER"
400 PRINT D$; "BLOAD (ASCII"
410 GOTO 430
420 PRINT CHR$(4);"PR#0"
430 A = PEEK(43634) + PEEK(43635) * 256
440 T = INT(A/256)
450 POKE 232,A-T*256
460 POKE 233,T
470 PRINT G$;"0"
480 FOR X = 1 TO N
490 RW = X: GOTO 530
500 RW = INT(RND(1)*N+1)
510 IF W(RW) = 1 THEN 500
520 W(RW) = 1
530 HGR: HCOLOR=7
540 SCALE=1
550 W$ = W$(RW)
560 E$ = W$(RW)
570 HX = 140-LEN(W$)*13/2
580 H = HX
590 GOSUB 610
600 GOTO 680
610 FOR L = 1 TO LEN(W$)
620 C$ = MID$(W$,L,1)
630 C = ASC(C$)
640 DRAW C AT H,V
650 H = H+13
660 NEXT L
670 RETURN
680 IF PEEK(-16287) > 127 THEN 730
690 VTAB 22: PRINT PDL(1)" "

700 IF PDL(1) > 200 THEN 730
710 IF PEEK(-16384) = 155 THEN 900
720 GOTO 680
730 GOSUB 110
740 PRINT G$"T "E$" "G$"0"
750 FOR D = 1 TO 500: NEXT D
760 FOR CL = 1 TO 7
770 H = HX
780 HCOLOR=CL: GOSUB 610
790 FOR D = 1 TO 200: NEXT D
800 NEXT Cia
810 FOR D = 1 TO 2000: NEXT D
820 HGR: HOME
830 FOR D = 1 TO ST
840 IF PEEK(-16287) > 127 THEN 830

156

r
a_ 4_, I

850 VTAB 22: PRINT PDL(1)" "

860 IF PDL(1) > 200 THEN 830
870 IF PEEK(-16384) = 155 THEN 900
880 NEXT D
890 NEXT X
900 POKE -16368,0
910 TEXT: HOME
920 END
930 DATA "HELLO, SEAN!","HELLO, SHAWN!"
940 DATA HOW ARE YOU TODAY?,HOW ARE YOU TODAY?
950 DATA PULL THE LEVER.,PULL THE LEVER.
960 DATA "VERY GOOD, SEAN!","VERY GOOD, SHAWN!"
970 DATA "TRY AGAIN, SEAN.","TRY AGAIN, SHAWN."
980 DATA "GOOD WORK, SEAN!","GOOD WORK, SHAWN!"

The routine for presenting routines in contained in the subroutine
beginning in line 610. The entire routine could be compacted so as to
increase programming speed by entering the routine as a single statement:

610 FOR L = 1 TO LEN(W$): DRAW ASC(MID$(W$,L,1)) AT H,V:
H = H+13: NEXT: RETURN

The one provision that must be taken into consideration when using a
large font character set is that the amount of information that can be
displayed on the screen at any given time is limited. Although a large
character set is appealing, if a student can use normal ASCII characters, this

should be the preferred video display mode. Chapter 7 provides additional
techniques for using the LASCII character set in conjunction with scanning
routines.

Combining Text and Graphics

A high-resolution font set is easily combined with graphics. The binary
file containing the character set is first loaded, then the routine to display
characters is added to the application. To illustrate, load the DOT-TO-DOT
program from the program disk. Next, add the statements shown below. When
the program is run, the message PRESS THE SWITCH is displayed at the bottom
of the screen.

115 PRINT CHR$(4);"BLOAD LASCII"
116 A = PEEK(43634) + PEEK(43635) * 256
117 T = INT(A/256)
118 POKE 232,A-T*256
119 POKE 233,T
121 SCALE=1
122 W$ = "PRESS THE SWITCH"
123 H = 120-10*LEN(W$)/2
124 GOSUB 125: GOTO 130
125 FOR L = 1 TO LEN(W$)
126 C = ASC(MID$(W$,L,1))
127 DRAW C AT H,145
128 H = H+13
129 NEXT L:RETURN

To display the message at the top of the screen, change the vertical
starting point in line 127:

127 DRAW C AT H,0

If regular size ASCII characters are needed for a high- resolution

graphics screen, the RASCII font set can be loaded and used. Erase the

157

program in memory using NEW and run the following:

10 PRINT CHR$(4);"BLOAD RASCII"
20 HGR: HCOLOR=7
30 SCALE=1
40 POKE 232,PEEK(43634): POKE 233,PEEK(43635)
50 HPLOT 50,75 TO 200,75
60 DRAW 65 AT 45,65
70 DRAW 66 AT 200,65

The above draws a line segment and indicates the beginning of the line by the
letter "A" and the ending of the line by the letter "B". Additional text can
be added by decoding strings of data as illustrated by these additions:

15 READS T$
16 DATA "THIS IS A LINE."
80 FOR L = 1 TO LEN(T$)
90 C = ASC(MID$(T$,L,1))
100 DRAW C AT 40+L*7,90
110 NEXT L

Variable Size Font Applications

The advantages of using a ready-made large font character set are
threefold: 1) The characters are highly visible, have a predictable size, and

are displayed on the screen fairly quickly. However, if you try to further
increase the size of the font characters contained in the LASCII file by means
of the SCALE instruction, you will find that the result is not particularly

readable. This is because of how the LASCII characters were written. By

connecting lines and writing from left-to-right and then from right-to-left,
the resulting characters are not especially amenable to the SCALE instruction.

In order to use the SCALE instruction effectively, each character or
shape should be written from left-to-right and with no downward connecting

lines. If the SHAPE TABLE MAKER is used, the following would be entered to

plot the ASCII character N:

3130 DATA 5,1,1,1,5,2,3,3,3,3,3
3140 DATA 5,1,1,1,5,2,3,3,3,3,3
3150 DATA 5,5,1,1,5,2,3,3,3,3,3
3160 DATA 5,1,5,1,5,2,3,3,3,3,3
3170 DATA 5,1,1,5,5,2,3,3,3,3,3
3180 DATA 5,1,1,1,5,2,3,3,3,3,3
3190 DATA 5,1,1,1,5,2,3,3,3,3,3

The above procedure has been used to produce a character set that can
generate characters any size wanted (within reason, of course), from small to

absolutely huge. The RASCII or "regular" ASCII character set contained on the

program disk was constructed by only plotting dots from left to right, and not
connecting rows of dots within each character. The result is characters that

are easily enlarged using the SCALE instruction.

Run the RASCII DISPLAY FONT to see how characters are displayed on
screen. To change the size of the characters reset the variable SC which is

used to specify the SCALE value in line 100.

100 SC=5

SCALE can be set to a value ranging from 1 to 255, and a scale value of

158

0 will resi'lt in the maximum scale size. As the SCALE size increases, the
number of characters that can be displayed on a given line decreases. The
following provides a general guideline for the number of letters that can be
displayed on a line for various SCALE values.

SCALE CHARACTERS
PER LINE

1 45
2 22
3 15
4 11
5 9

6 7

7 6

8 6

9 5

10 4

11 4

12 4

13 3

14 3

15 3

In terms of type size as expressed in points, normal ASCII characters have
a point size of approximately 18, where 1 point is 1/72 of an inch. Thus, a
point size of 18 results in uppercase letters 1/4 inch in size. Scaling
characters to 2 results in a point size of 36 which is the point size of the

LASCII character set. A scale value of 4 results in a point size of 72 (or
characters 1 inch high); and a scale value of 8 results in a point size of 144
(or uppercase letters 2 inches high). The LASCII character set has a point
size of 36 which results in uppercase letters 1/2 inch high.

The following illustrates the scaling of the letter A using the RASCII
character set with the SCALE value is set to 3. Each time the letter is
displayed, the vertical beginning point for displaying the letter is moved so
that the first vertical point is row 76, the second starting point is row 77
and the third vertical starting point is row 78. As a result, after three
passes, the scaled letter is filled-in and thereby displayed on screen as a
solid character.

Variable Size Single Character Applications

Variable SC in line 100 is set to 8 so that the resulting size of each
character displayed is 2 inches or a point size of 144. As was already said,
this technique results in some distortion as the size of scale size is

increased, but there is no doubt that this approach can be used to display
letters that are extremely visual! For an even larger display, set SC to 15.
Note, however, that as the size of the characters increase, the number of
characters that can be displayed at a give time decreases.

10
20
30
40
50
60
70
80
90
100

REM RASCII DISPLAY FONT
REM
HOME
PRINT CHR$(4);"BLOAD RASCII"
A = PEEK(43634) + PEEK(43635)
T = INT (A/256)
POKE 232,A-T*256
POKE 233,T
SC = 8
C = 64

* 256

159

110 C = C+1: if C > 90 THEN C = 65
120 HGR: HCOLOR=7
130 GOTO 180
140 SCALE=SC: ROT=0
150 FOR K=1 TO SC
160 DRAW C AT 125,50+K
170 NEXT: RETURN
180 IF PEEK(-16287) > 127 THEN 130
190 IF PEEK(-16287) > 127 THEN 170
200 IF PEEK(-16384) = 155 THEN 240
210 GOTO 190
220 GOSUB 140
230 FOR D = 1 TO 1500: NEXT D
240 GOTO 110
250 POKE -16368,0
260 TEXT: HOME
270 END

To add speech to the program, make these modifications:

35 PRINT CHR$(4);"BRUN TEXT. LKER"
225 PRINT CHR$(C)
226 PRINT "THE LETTER IS "CHR$(C)

If the TEXTALKER program has already been run, line 35 can be set to
reconnect the Echo:

35 PRINT CHR$(4);"PR#0"

To use lowercase letters, change lines 100 and 110 as follows:

100 C = 97
110 IF C > 122 THEN C = 97

To select and display letters randomly, change line 110:

110 C = INT(RND(1)*26+65)

To use numbers instead of letters, set variable C as follows:

100 C = 47
110 C = C+1: IF C > 57 THEN C = 48

Joystick Input

For one student who used a modified version of the above program, the
most appropriate response seemed to be a pull motion using a joystick. The

RASCII DISPLAY FONT program can be modified to accommodate this type of input

by these changes:

35 PT = PDL(1)+50
125 IF PDL(1) > PT THEN 125
195 IF PT = 305 THEN 200
196 IF PDL(1) > PT THEN 220

The variable PT determines the initial setting of PDL(1) when in the

neutral position, and then adds 50 to set the threshold value needed to
initiate a switch response. If the initial value of PDL(1) is 130, then the
joystick must be moved so that a value greater than 180 is reached before a
switch response is recorded.

160

Line 125 requires that the joystick be in the neutral position before an
actual response can be made. Line 195 by-passes the PDL(1) statement if the
joystick is not connected as indicated by a PT value of 305. Line 196 reads
the joystick response and transfers control to line 220 if PDL(1) is greater
than variable PT.

Variable Size Word Display

The RASCII SWITCH FONT program displays a word (or string of characters)

following each switch response. This is accomplished by the routine in lines
310 to 340. Note variable H in line 280. This sets the beginning column
position for each character displayed based on the SCALE value (i.e.,

variable SC) and the number of characters in the string variable W$.

10 REM RASCII SWITCH FONT
20 REM
30 DIM W$(50), W(50)
40 D$ = CHR$(4): G$ = CHR$(5)
50 V = 75
60 ST = 150
70 N$ = "MIKE"
80 ONERR GOTO 110
90 N = N+1
100 READ W$(N): GOTO 90
110 POKE 216,0: HOME
120 N = N-1
130 PRINT D$;"BRUN TEXTALKER"
140 PRINT D$;"BLOAD LASCII"
150 A = PEEK(43634) + PEEK(43635) * 256
160 T = INT (A/256)
170 POKE 232,A-T*256
180 POKE 233,T
190 FOR X = 1 TO N
200 RW = X: GOTO 240
210 RW = INT(RND(1)*N+1)
220 IF W(RW) = 1 THEN 210
230 W(RW) = 1
240 HGR: HCOLOR=7
250 W$ = W$(RW): GOSUB 270
260 GOTO 350
270 SC = 4
280 H = 130 - SC*6*(LEN(W$)/2+1) - 6
290 IF H < -SC*6 THEN H = -SC*6
300 SCALE=SC: ROT=0
310 FOR K = 1 TO SC: FOR L = 1 TO LEN(W$)
320 C = ASC(MID$(W$,L,1))
330 DRAW C AT H+L*SC*6,V+K
340 NEXT: NEXT: RETURN
350 IF PEEK(-16287) > 127 THEN 38C
360 IF PEEK(-16384) = 155 THEN 520
370 GOTO 350
380 PRINT G$"T VERY GOOD "N$" "G$"0"
390 FOR D = 1 TO 500: NEXT D
400 PRINT G$"T THE WORD IS "W$" "G$"0"
410 FOR CL = 1 TO 3
420 HCOLOR=CL: GOSUB 270
430 Fen D = 1 TO 200: NEXT D
440 NEXT CL
450 FOR D = 1 TO 2000: NEXT D
460 HGR
470 FOR D = 1 TO ST

161

r, r
V

480 IF PEEK(-16287) > 127 THEN 470
490 IF PEEK(-16384) = 155 THEN 520
500 NEXT D
510 NEXT X
520 POKE -16368,0
530 TEXT: HOME
540 END
540 DATA MRS. SMITH,CAR,SONG,SUMMER

To display each word following a switch response, make these changes:

2" W$ = W$(RW)
350 IF PEEK(-16287) > 127 THEN 350
355 IF PEEK(-16287) > 127 THEN 380
370 GOTO 355
385 GOSUB 270
470
480
490
500

The following program changes result in each word or phrase being
displayed with SCALE set to 2, but the word is not filled in by a second pass.

When the second pass is encountered, or when K in line 325 is greater than 1,

control is sent to the newly created switch sensing routine in line 345. Now
each time the switch is engaged, the full letter is displayed and presented
via the Echo.

10 REM RASCII-APPLICATIONS
250 W$ = W$(RW)
260
270 SC = 2
325 IF K > 1 THEN GOSUB 345
340 NEXT: NEXT
341 GOTO 380
345 IF PEEK(-16287) > 127 THEN 345
350 IF PEEK(-16287) > 127 THEN 355
351 GOTO 360
355 PRINT G$" "CHR$(C)" "G$"0"
356 RETURN
410
420
430
440

Emphasized Character Display

To display characters at a normal text size but in an emphasized mode,
each character is displayed twice when the SCALE is set to 1, but the second
time the character is displayed the beginning position is lagged one dot by

setting the loop in line 310:

270 SC = 1
310 FOR K = 1 TO 2: FOR L = 1 TO LEN(W$)

Advantages and Disadvantages of Variable Font Characters

The advantage of the variable font procedure is that there is maximum
flexibility in terms of character size. On the other hand, there are several

disadvantages: 1) the expanded characters must be plotted using a certain

162

format (i.e., plotting characters from left to right and no upward or downward
connected dots); 2) varying character size requires additional software
modifications to handle the number of characters that can be presented on a
single line; 3) the characters become somewhat distorted with increasing size
so that an M scaled to 1 is somewhat different than an M scaled to 3; and 4)
each character is displayed at the specified scale size a number of times that
is equal to the scale size thereby reducing program speed. If the scale vale
is 6, the character is actually displayed 6 times. This, as one might expect,
can substantially reduce the speed of the program and make certain
applications using this approach quite slow.

To display the characters a bit more rapidly, the display routine could
confined to a single line:

490 FOR K = 1 TO SC: FOR L = 1 TO LEN(W$): DRAW
ASC(MIDS(WS,L,1)) AT H+L*SC*6,V+K: NEXT: NEXT: RETURN

Inverse Screen Display

All of the single switch programs considered thus far have used
traditional white (or one of the available low- or high-resolution colors)

characters on a black screen background. For certain students, an inverse
screen image might be useful. To illustrate how this can be accomplished,
first load the READ program from the program disk.

After the program has been loaded, add line 175 and then run the program.

175 INVERSE

When the program is run with the INVERSE instruction, the characters are
displayed in inverse screen mode. If lowercase letters are used, and an 80-
column card is installed, enter PR#3 (if the card is installed in slot t;3)
before running the program.

To display the items on a white screen add the following:

55 FOR K = 1 TO 40: WB$ = WBS+" ":NEXT
170 VL = 7
176 FOR K = 1 TO 22: VTAB K: PRINT WB$
320 NORMAL
340 PRINT CRS: INVERSE

Line 55 creates a string comprised of 40 spaces. Line 176 then displays the
WB$ string so that the screen background is changed to white. The above
simple modifications provides a definite visual alternative to the usual white

on black video mode.

The above approach can also be used to display low- and high-resolution
images in inverse mode. To accomplish this the screen must first be set to

white, then the images displayed with either COLOR or HCOLOR set to 0. Load
the RASCII DISPLAY FONT program and make these modifications:

85 HMI
100 HCOLOR=7
105 FOR K = 0 TO 159: HPLOT 0,K TO 279,K: NEXT
106 HCOLOR=0

The key to the modification is line 105 which changes the high resolution
screen from black to white. The HCOLOR is then set to 0 in line 106 so that

the characters are displayed in black on a white screen background.

163

To reverse a low-resolution graphics screen, insert the following after
the GR instruction and change the COLOR codes throughout the program so that
codes of 0 are set to 15, and codes of 15 are changed to something other than
15.

41 COLOR=15: INVERSE
42 FOR K = 0 TO 39
43 HLIN 0,39 AT K: NEXT

Add the above routine to the NILT program and then change line 130 so that the
COLOR is set to 7.

Cued Language

If a student is able to use the keyboard, or is just beginning to use a
keyboard, a variable size font display can provide a source for many useful
language activities. The Cued Language program shown below presents a series
of words using the RASCII font set. Each time a word is presented, the
outline of the word is shown. The task is to enter each letter of the word
shown in sequence. If the first word is FRED, the first letter entered is F.
The outline provides not only a cue, but the program will only provide
feedback when the appropriate letter in the letter sequence is pressed. For
students having difficulty differentiating between keys, or to provide
students with a specific series of keystrokes, this activity provides a very
clear and directed language activity. This program is also useful for
presenting an initial language activity using the keyboard or a transition
activity from a single switch to the keyboard.

Each time the appropriate letter is pressed, the outline of the letter
is filled and the letter presented via the Echo. After the last letter has
been entered, the entire word is re-displayed in the various high-resolution
colors. The program is currently set to present the words in the order read

by DATA statements. To present the words in random order, delete line 210.

Before running the program, set the name variable in line 60 to the
appropriate name. Variable V in line 50 signifies the beginning vertical
screen row for displaying words. The size of the RASCII font used is
determined by variable SC in line 270. Experiment with different SC values,
but be aware that as the font size increases the number of characters that can
be display across the screen decreases.

10 REM CUED LANGUAGE
20 REM
30 DIM W$(50),W(50)
40 D$ = CHR$(4): G$ = CHR$(5)
50 V = 75
60 N$ = "FRED"
70 ONERR GOTO 100
80 N = N+1
90 READ W$(N): GOTO 80
100 POKE 216,0: HOME
110 N = N-1
120 PRINT D$;"BRUN TEXTALKER"
130 PRINT D$;"BLOAD RASCII"
140 A = PEEK(43634)+PEEK(43635)*256
150 T = INT(A/256)
160 POKE 232,A-T*256
170 POKE 233,T
180 FOR X = 1 TO N
190 HOME
200 RW = X: GOTO 240

164

210 RW = INT(RND(1)*N+1)
220 IF W(RW) = 1 THEN 210
230 W(RW) = 1
240 HGR: HCOLOR=7
250 W$ = W$(RW): GOSUB 270
260 GOTO 360
270 SC = 4
280 H = 130-SC*6*(LEN(W$)/2+1)-6
290 IF H < -SC*6 THEN H = -SC*6
300 SCALE=SC: ROT=0
310 FOR L = 1 TO LEN(W$)
320 C = ASC(MID$(W$,L,1))
330 DRAW C AT H+L*SC*6,V
340 NEXT L
350 RETURN
360 FOR L = 1 TO LEN(W$)
370 C$ = MID$(W$,L,1)
380 VTAB 20: HTAB 1
390 GET KY$
400 IF ASC(KY$) = 27 THEN 670
410 IF KY$ = C$
420 GOTO 390
430 PRINT G$"11 "C$" "G$"0"
440 GOSUB 460: GOTO 490
450 FOR K = 1 TO SC
460 C = ASC(C$)
470 DRAW C AT H+L*SC*6,V+K
480 NEXT K: RETURN
490 NEXT L
500 PRINT G$"T VERY GOOD "N$" "G$"0"
510 FOR D = 1 TO 500: NEXT D
520 PRINT G$"T THE WORD IS "W$" "G$"0"
530 FOR CL = 1 TO 3
540 FOR L = 1 TO LEN(W$)
550 C$ = MID$(W$,L,1)
560 HCOLOR=CL: GOSUB 450
570 NEXT L
580 NEXT CL
590 FOR D = 1 TO 750: NEXT D
600 HGR
610 IF PEEK(-16287) > 127 THEN 610
620 IF PEEK(-16287) > 127 THEN 660
630 KY = PEEK(-16384): IF KY = 155 THEN 670
640 IF KY > 127 THEN 660
650 GOTO 620
660 NEXT X
670 POKE -16368,0
680 TEXT: HOME
690 END
700 DATA FRED,RADIO,CHAIR,MICKEY MOUSE
710 DATA CHURCH,HOUSE,HENRY,MAMA,GRANDMA
720 DATA PIZZA, HAMBURGER, JUICE, SNACK, CEREAL

The following changes converts the program to single switch use so that

each time the switch is engaged, one character in the sequence is filled in:

390 IF PEEK(-16287) > 127 THEN 390
395 IF PEEK(-16287) > 127 THEN 430
400 IF PEEK(-16384) = 155 THEN 670

165

Echo Pronunciation

If there is a discrepancy between how a word should be pronounced and how
the word is actually pronounced by the Echo, the following shows how to input
a display form and an Echo form for each stimulus word used in the program.
When this modification is used, each DATA statement must have a stimulus word
(i.e., the word that is displayed on screen) and a corresponding Echo word
(i.e., the word that is synthesized by the Echo). In the below example, N is
set to 2 because this is the number of stimulus words read (i.e., SOCCER and
RADIO) See Chapter 4 for more information reaarding the Echo and Echo
applications.

30 DIM W$(50),W(50),E$(50)
90 READ W$(N), E$(N): GOTO 80
245 E$ = E$(RW)
520 PRINT G$"T THE WORD IS "E$" "G$"0"
700 DATA SOCCER, SOCK ER
710 DATA RADIO, RAY DEE 0

High-resolution Design Applications

High-resolution Geometric Graphics

Although low-resolution graphics are easier to use from a programming
standpoint, high-resolution graphics allows for the creation of more elaborate

screen images. The following program illustrates how to use high-resolution
graphics in a single switch format to create a variety of geometric shapes and

images. The HIRES GRAPHICS program contains two major subroutines: the first

subroutine (line 120) is used to read switch input. The second subroutine
(line 150) is used to draw a triangle. Before this subroutine is called, five
variables must be set (see lines 130 and 140): RE (the number of lines drawn),

FD (the length of the line), RT (the angle for drawing the next line), X (the
horizontal axis position of the line), Y (the vertical axis position of the

line).

10 REM HIRES GRAPHICS
20 REM
30 HOME
40 HGR
50 HCOLOR=3
60 C = .0174532
70 REM
80 REM ENTER GRAPHICS ROUTINES
90 REM
100 REM ROUTINE #1
110 REM
120 GOSUB 2000
130 RE = 3: FD = 55: RT = 120
140 X = 100: Y = 50
150 GOSUB 1000
160 GOSUB 2000
170 CALL 62450
500 GOTO 120
510 POKE -16368,0
520 TEXT: HOME
530 END
1000 FOR J = 1 TO RE
1010 FOR K = 1 TO 2
1020 IF K = 1 THEN D = FD: GOTO 1060

166

1030
1040
1050

AA = 360-RT: AG = AA+AG
IF AG < 361 THEN 1090
AG = AG-360: GOTO 1090

1060 T = INT(X + COS(AG*C) * D + .5)
1070 U = INT(Y - SIN(AG*C) * D + .5)
1080 HPLOT X,Y TO T,U: X = T: Y = U: AA = 0
1090 NEXT K: NEXT J
1100 RETURN
2000 IF PEEK(-16287) > 127 THEN 2000
2010 IF PEEK(-16287) > 127 THEN 2040
2020 IF PEEK(-16384) = 155 THEN 510
2030 GOTO 2010
2040 RETURN

To draw a square in the upper left-hand corner of the screen, add these

lines:

170 FD = 60: RT = 90: RE = 4
171 X = 0: Y = 0
172 GOSUB 1000
173 GOSUB 2000

And to draw a circle, add these lines:

180 FD = 7: RT = 18: RE = 20
181 X = 170: Y = 100
182 GOSUB 1000
183 GOSUB 2000

High-resolution Files

As with low-resolution graphics, it is possible to create and save high-

resolution screens. While a low-resolution screen is comprised of 1,024
bytes, a high-resolution consists of 8,192 bytes. As a result of this, storing

a high-resolution screen on disks requires an ample amount of space:

approximately 34 sectors. Because high-resolution files are quite large,
loading a file from disk to the screen does take a bit of time. The following
program can be used to create high-resolution graphics screens, and to store
the high-resolution images on disk:

10 REM HIRES AUTHOR
20 REM
30 HGR
40 CC = 7
50 HOME: VTAB 22
60 PRINT "U=UP D=DOWN L=LEFT R=RIGHT"
70 PRINT "E=ERASE S=SAVE G=GET C=COLOR"
80 PRINT "Q=QUIT W=WRITE X=DON'T WRITE"
90 H = 139: V = 80
100 HCOLOR=CC: HPLOT }',V
110 X = PEEK(-16384)
120 IF X > 127 THEN 170
130 FOR L = 1 TO 8: NEXT L
140 IF CC = 0 THEN HCOLOR=7
150 IF CC > 0 THEN HCOLOR=0
160 HPLOT H,V: GOTO 100
170 X$ = CHR$(X-128): POKE -16368,0
180 IF X$ = "Q" THEN 490
190 IF X$ = "E" THEN 30
200 IF X$ = "C" THEN 360
210 IF X$ = "S" OR X$ = "G" THEN 410

167

220 IF X$ = "W" THEN D = 0: GOTO 100
230 IF X$ = "X" THEN D = 1: GOTO 100
240 IF D = 1 THEN HCOLOR = 0: HPLOT H,V
250 IF X$ = "U" THEN V = V-1
260 IF X$ = "D" THEN V = V+1
270 IF X$ = "L" THEN H = H-1
280 IF X$ = "R" THEN H = H+1
290 IF H < 0 THEN H = 0
300 IF H > 279 THEN H = 279
310 IF V < 0 THEN V = 0
320 IF V > 159 THEN V = 159
330 IF D = 1 THEN 100
340 HPLOT H,V
350 GOTO 100
360 HOME: VTAB 23: HTAB 5
370 PRINT "(MAKE SELECTION AND PRESS RETURN)"
380 VTAB 21: INPUT "COLOR (1 TO 7)? ";CC$
390 CC = VAL(CC$)
400 GOTO 50
410 HOME: VTAB 22
420 INPUT "FILE NAME? ";F$
430 HOME
440 IF X$ = "G" THEN 470
450 PRINT CHR$(4);"BSAVE";F$",A8192,L8192"
460 GOTO 40
470 PRINT CHR$(4);"BLOAD";F$
480 GOTO 40
490 POKE -16368,0
500 TEXT: HOME
510 END

To draw a black image on a white screen, add the following lines before
running the program and then select the X (DON'T WRITE) option:

31 FOR K = 8192 TO 16383
32 POKE K,255: NEXT K

As shown in line 450, the primary high-resolution screen begins at
address 8192 and is comprised of 8,192 bytes (A8192 indicates the starting
memory address and L8192 signifies the file length).

High-resolution Page Switch

The two high-resolution screens are often used in conjunction to give the

illusion of movement or simply to quickly present two distinct high-resolution

screens. As is the case with low-resolution graphics, soft switches are used
to switch between page 1 (memory locations 8192 to 16383) and page 2 (memory
locations 16384 to 24:75) of high-resolution graphics. The following program
illustrates how to switch between page 1 and page 2 high-resolution screens.

10 REM HIRES
20 REM
30 HGR2
40 HCOLOR=7
50 HPLOT 250
60 HGR
70 HPLOT 0,0
80 POKE -163
90 IF PEEK(-
100 IF PEEK(
110 IF PEEK(

PAGE SWITCH

,0 TO 125,150

TO 125,150
02,0
16287) > 127 THEN 90
-16384) = 155 THEN 190
-16287) > 127 THEN 130

168

120
130

GOTO 100
POKE -16299,0

140 IF PEEK(-16287) > 127 THEN 140
150 IF PEEK(-16287) > 127 THEN 170
160 GOTO 150
170 POKE -16300,0
180 GOTO 90
190 POKE -16368,0
200 TEXT
210 END

The HIRES PAGE SWITCH program can be modified tc read high-resolution
files from disk, and then switch between different 1-igh-resolution screens.
Because each high-resolution file requires com:iderable memory (at least 34
sectors), a separate disk might be dedicated to a program that uses many high-

resolution files. To modify the above program to recd a high-resolution file

from disk, and then to switch between page 1 and page 2 high-resolution
screens, make the following modifications:

50
70 F$ = "HI-RES FILE NAME"
75 PRINT CHR$(4);"BLOAD";F$

The high-resolution file in F$ is displayed on screen using page 1 of

high-resolution memory. Each switch response alternates between page 1 and
page 2 (which is blank unless otherwise set) screens. As noted before, high-

resolution files can be identified in the catalog in that each has

approximately 34 sectors of memory. Files containing shape tables, on the
other hand, are often comprised of fewer sectors.

169

I 7 u

Chapter 7

Single Switch Math

Developing Math Skills

The purpose of single switch software is to gradually develop cognitive,
learning and academic skills. If a student has the cognitive ability, there
is absolutely no reason why regular curricular materials and content cannot
be modified for use in a single switch format.

When using academic software, or when considering its use, considerable
effort must be made to insure that the material is at the appropriate
difficulty level. If the material is too easy or too difficult, learning will
not take place. The goal should be to incorporate content that can be

mastered.

If a student cannot match letters, providing more complicated reading
tasks will probably have little impact on learning or achievement...other than
increasing the student's frustration level. Likewise, if a student is capable

of mastering higher level academic tasks, restricting this student to

cause/effect single switch software, no matter how impressive the graphics,
is a tremendous waste of intellectual potential.

As discussed in Chapter 5, a major concern of single switch scan programs

is the very characteristic that makes this approach so beneficial: the

multiple-choice format. For two alternatives, a score of 50% correct can be

attributed to chance; for three alternatives, the chance score is 33%; for
four alternatives, the chance score is 25%; and for five alternatives, the
chance score is 20%.

Although there is no firm rule for deciding appropriate content difficulty
level, the following factors should be considered:

1) The student has demonstrated an ability to master content at a

lower difficulty level. If the student has not mastered simple primary
addition facts such as 2 + 3, there is little reason to present difficult
multiplication facts (e.g., 8 X 6);

2) The student's responses suggest an understanding of the content;

3) The student is able to select the correct alternative beyond a
chance level of responding without verbal prompts;

Feedback

How and when to provide feedback following a single switch response must
always be considered in relation to a specific student's needs. Although
there are no absolutes with respect to feedback, three points should be kept

in mind: First, negative feedback such as sad faces, sad tunes, fog horns

etc. should be avoided. For children and students using single switch

software, the goal is to reinforce correct responses and not "punish"

incorrect selections. In short, emphasize the positive rather than the
negative.

170

171

Second, the purpose of software is to enhance learning and not to display
the wonderfulness of computer technology by a long and involved sound and

graphics following each correct response. Following a correct response,
something should happen on screen to indicate that the correct answer was
selected. However, this "something" should be short and to the point.

Third, there are occasions when, following an incorrect response, the

correct answer is displayed in order to provide corrective feedback and
thereby enhance learning. This type of feedback is frequently useful with
older students when teaching specific skills (e.g., primary facts, content

area vocabulary).

Number Matching Readiness

The NUMBER COUNT program is a relatively simple cause/effect task
involving the numbers I to 5. Each switch response causes a number to be
displayed in low-resolution graphics on screen in sequential order. After the
sequence of numbers has been presented, the sequence begins again with N set

to I.

10 REM NUMBER COUNT
20 REM
30 HOME
40 GR
50 V = 17: H = 17
60 N = N+1: IF N > 5 THEN N = 1
70 IF PEEK(-16287) > 127 THEN 70
80 IF PEEK(-16287) > 127 THEN 110
90 IF PEEK(-16384) = 155 THEN 150
100 GOTO 80
110 GR
120 COLOR=15
130 ON N GOSUB 180, 220,270,330,370
140 GOTO 60
150 POKE -16368,0
160 TEXT: HOME
170 END
180 PLOT H+1,V
190 VLIN V,V+6 AT H+2
200 HLIN H+1,H+3 AT V+7
210 RETURN
220 HLIN H+1,H+3 AT V
230 PLOT H,V+1: PLOT H+4,V+1: PLOT H+4,V+2
240 PLOT H+3,V+3: PLOT H+2,V+4: PLOT H+1,V+5
250 PLOT H,V+6: HLIN H,H+4 AT V+7
260 RETURN
270 HLIN H,H+4 AT V
280 HLIN H,H+4 AT V+7
290 VLIN V,V+7 AT H+4
300 HLIN h+2,11J-4 AT V+3
310 HLIN H+2,H+4 AT V+4
320 RETURN
330 VLIN V,V+7 AT H+3
340 PLOT H+2,V+1: PLOT H+1,V+2: PLOT H,V+3
350 HLIN H,H+4 AT V+4
360 RETURN
370 HLIN H,H+4 AT V
380 VLIN V,V+2 AT H
390 HLIN H,H+3 AT V+3
400 VLIN V+4,V+6 AT H+4
410 HLIN H,H+4 AT V+7

171

420 RETURN

A modification of the above program is a two item number matching task.

In this situation, the stimulus or target shape is displayed, followed by two

alternatives, one of which is identical to the stimulus shape while the second

alternative is dissimilar. Each of the alternative shapes is scanned by means

of a horizontal line. If the switch is engaged while the shape identical to

the stimulus shape is being scanned, correct feedback is provided:

10 REM NUMBER MATCH
20 REM
30 HOME
40 GR
50 FOR X= 1 TO 5
60 COLOR=15
70 SC = 8: SP = 1
80 S1 = INT(RND(1)*5+1)
90 S2 = INT(RND(1)*5+1)
100 IF S1 = S2 THEN 90
110 C = Si: CP = 1
120 IF RND(i) > .5 THEN C = S2: CP = 2
130 H = 17: V = 5
140 N = C: GOSUB 160
150 GOTO 180
160 ON N GOSUB 420,460,510,570,610
170 RETURN
180 H = 28: V = 22
190 N = Si: GOSUB 160
200 H = 26: V = 22
210 N = S2: GOSUB 160
220 HLIN SC,SC+4 AT 32
230 FOR D = 1 TO 150
240 IF PEEK(-16287) > 127 THEN 330
250 IF PEEK(-16384) = 155 THEN 390

260 NEXT D
270 COLOR=0
280 HLIN SC,SC+4 AT 32
290 SC = SC+18: SP = 2
300 IF SC > 30 THEN SC = 8: SP = 1

310 COLOR=15
320 GOTO 220
330 IF CP < > SP THEN 360
340 FOR L = 1 TO 5
350 PRINT CHR$(7): NEXT L
360 FOR L = 1 TO 1000: NEXT L
370 CALL -1994
380 NEXT X
390 POKE -16368,0
400 TEXT: HOME
410 END
420 PLOT H+1,V
430 VLIN V,V+6 AT H+2
440 HLIN H+1,H+3 AT V+7
450 RETURN
460 HLIN H+1,H+3 AT V
470 PLOT H,V+1: PLOT H+4,V+1: PLOT H+4,V+2

480 PLOT H+3,V+3: PLOT H+2,V+4: PLOT H+1,V+5
490 PLOT H,V+6: HLIN H,H+4 AT V+7

500 RETURN
510 HLIN H,H+4 AT V
520 HLIN H,H+4 AT V+7
530 VLIN V,V+7 AT H+4

172

173

540 HLIN H+2,H+4 AT V+3
550 HLIN H+2,H+4 AT V+4
560 RETURN
570 VLIN V,V+7 AT H+3
580 PLOT H+2,V+1: PLOT H+1,V+2: PLOT H,V+3
590 HLIN H,H+4 AT V+4
600 RETURN
610 HLIN H,H+4 AT V
620 VLIN V,V+2 AT H
630 HLIN H,H+3 AT V+3
640 VLIN V+4,V+6 AT H+4
650 HLIN H,H+4 AT V+7
660 RETURN

Reviewing Subroutines

By deleting lines 50 through 380 (or the entire FOR/NEXT loop), and then
adding lines 50 to 120 and line 170, the single switch can be used to review

each of the low-resolution subroutines. If more subroutines are added, N
should be set to revert back to 1 (line 90) if the maximum number of
subroutines in the program is exceeded. In addition, the beginning line of
each subroutine must be added to the GOSUB list in line 160:

50 IF PEEK(-16287) > 127 THEN 50
60 IF PEEK(-16287) > 127 THEN 90
70 IF PEEK(-16384) = 155 THEN 390
80 GOTO 60
90 N = N+1: IF N > 5 THEN N = 1
100 H = 17: V = 15
110 CALL -1994
120 COLOR=15
160 ON N GOSUB 420,460,510,570,610
170 GOTO 50

Number Concept

A very important stage in the progression of single switch math skills

is number concept. Before a student is able to understand a concept such as
3 + 2, the student must be able to conceptualize that the number three
represents a group of three items. One method for assessing and teaching this
important skill, and a skill that is required before beginning computational
problems, is to use the NUMBER CONCEPT program.

When this program is run, a number between 1 and 5 is selected and low-
resolution blocks corresponding to tnis number are displayed on the screen.
Immediately below the low-resolution blocks are the numbers 1 to 5 which are
scanned from left to right using a horizontal cursor. The task is to select
the number that corresponds to the number of blocks displayed. If the correct

number is selected, feedback is given. Following each correct response, the
correct or target number is highlighted by changing the low-resolution screen
color of this value (lines 370 to 410).

10 REM NUMBER CONCEPT
20 REM
30 H = 5
40 FOR X= 1 TO 5
50 R = INT (RND(1)*H+1)
60 NC = 0
70 GR: COLOR=15
80 HOME

173

90 FOR K= 1 TO H
100 ON K GOSUB 460,540,630,720,780
110 COLOR=15
120 NEXT K
130 FOR K = 0+(2.5-R*.5) TO (R-1)+2.5-R*.5
140 FOR J = 1 TO 5
150 HLIN K*8,K*8+6 AT 10 +J
160 NEXT J
170 NEXT K
180 FOR L = 1 TO 500: NEXT L
190 AD = 0: IF NC = 0 THEN AD = AD+1
200 LC = NC*8+(5-H)*4+AD
210 HLIN LC,LC+4 AT 32
220 AD = 0
230 POKE -16368,0
240 FOR D = 1 TO 100
250 IF PEEK(-16287) > 127 THEN 330
260 KY = PEEK(-16384): IF KY > 127 THEN 330
270 NEXT D
280 COLOR=0
290 HLIN LC,LC+4 AT 32
300 NC = NC+1: IF NC = H THEN NC = 0
310 COLOR=15
320 GOTO 190
330 POKE -16368,0
340 IF KY = 155 THEN 1170
350 IF R = NC+1 THEN 370
360 GOTO 420
370 FOR KC = 1 TO 5
380 COLOR=10+NC
390 ON R GOSUB 460,540,630,720,780
400 FOR L = 1 TO 500: NEXT L
410 NEXT KC
420 NEXT X
430 TEXT: HOME
440 END
450 K = 0
460 Z = 3
470 IF H = 4 THEN Z = 7
480 IF H = 3 THEN Z = 11
490 IF H = 2 THEN Z = 15
500 VLIN 22,28 AT Z
510 PLOT Z-1,23
520 HLIN Z-1,Z+1 AT 29
530 RETURN
540 Z = 8
550 IF H 4 THEN Z = 12
560 IF H = 3 THEN Z = 16
570 IF H = 2 THEN Z = 20
580 HLIN Z4-1,Z+3 AT 22
590 PLOT Z,23: PLOT Z+4,23: PLOT Z+4,24
600 PLOT Z+3,25: PLOT Z+2,26: PLOT Z+1,27
610 PLOT Z,28: HLIN Z,Z+4 AT 29
620 RETURN
630 Z = 16
640 IF H = 4 THEN Z = 20
650 IF H = 3 THEN Z = 24
660 HLIN Z,Z+4 AT 22
670 HLIN Z,Z+4 AT 29
680 VLIN 22,29 AT Z+4
690 HLIN Z+2,Z+4 AT 25
700 HLIN Z+2,Z+4 AT 26

174

710
720
730
740
750
760
770
780
790
800
810
820
830
840

RETURN
Z = 24
IF H = 4 THEN Z =
VLIN 22,29 AT Z+3
PLOT Z+2,23: PLOT
HLIN Z,Z+4 AT 26
RETURN
Z = 32
HLIN Z,Z+4 AT 22
VLIN 22,24 AT Z
HLIN Z,Z+3 AT 25
VLIN 26,28 AT Z+4
HLIN Z-Z+4 AT 29
RETURN

28

Z+1,24: PLOT Z,25

The program continues until the number of items specified in line 40 have
been presented. To present 10 items instead of 5, modify line 40:

40 FOR X = 1 TO 10

or use a variable to specify the number of items:

35 N = 10
40 FOR X = 1 TO N

or

35 HOME: VTAB 5
36 INPUT "ITEMS? ";N
40 FOR X = 1 TO N

Time Duration Input

The majority of single switch programs use either simple cause/effect
input (e.g., the switch causes a specific screen event to happen) or automatic
scanning (e.g., a routine is used to scan possible alternatives from a list

of possibilities). In addition, as was already discussed, controlled or
indirect scanning is sometimes used in which an input device is used to scan

a list of alternatives and a time delay used to select an alternative
selection.

Another technique that can be used, and one that requires a very
sophisticated response, incorporates a time duration routine to input a number

of switch responses within a specified interval. The number of times the
switch has been engaged while in the time duration interval is then used as

the actual response.

As an example, a four second interval is created in which the student can
press the switch from 1 to 5 times. If the switch is pressed once, the number
1 is displayed; if the switch is pressed twice, the number 2 is displayed,

etc.

The key to the INTERVAL INPUT program is the switch routine contained in

lines 90 to 170. This is a timing loop that counts the number of times the

switch is engaged while in the loop. If the switch is engaged three times,
N is incremented to 3. After the loop has been completed, if N is greater
than 0, the low-resolution graphics number corresponding to N is displayed via

the GOSUB routine in line 220.

Each time the loop is encountered, a READY prompt appears at the bottom

of the screen. Each time the switch is engaged while in the loop, and

175

.1. r..I)

asterisk is displayed. If the switch is not engaged while in the loop, the
screen is cleared and after a delay the READY prompt is shown again. If,

following the READY prompt, the switch is engaged three times, an asterisk
appears following each switch response:

READY: * * *

After the interval has been completed, the three asterisks signify that
the number 3 has been selected and this number is then displayed on screen in
low-resolution graphics.
The Esc key is used to exit the program.

10 REM INTERVAL INPUT
20 REM
30 HOME
40 GR
50 FOR L = 1 TO 2000: NEXT L
60 HOME
70 VTAB 21
80 PRINT "READY: ";
90 FOR D = 1 TO 200
100 IF PEEK(-16287) > 127 THEN 130
110 IF PEEK(-16384) = 155 THEN 250
120 GOTO 170
130 N = N+1
140 IF N > 5 THEN N = 5: GOTO 190
150 PRINT "* ";
160 IF PEEK(-16287) > 127 THEN 160
170 NEXT D
180 IF N = 0 THEN 30
190 GR
200 HOME
210 COLOR=15
220 ON N GOSUB 280,330,390,460,510
230 N = 0
240 GOTO 50
250 TEXT: HOME
260 POKE -16368,0
270 END
280 H = 20: V = 10
290 VLIN V,V+6 AT H
300 PLOT H-1,11
310 HLIN H-1,H+1 AT V+7
320 RETURN
330 H = 18: V = 10
340 HLIN H+1,H+3 AT V+2
350 PLOT H,H+3: PLOT H+4,V+3: PLOT H+4,V+4
360 PLOT H+3,V+5: PLOT H+2,V+6: PLOT H+1,V+7
370 PLOT H,V+8: HLIN H,H+4 AT V+9
380 RETURN
390 H = 18: V = 10
400 HLIN H,H+4 AT V+2
410 HLIN H,H+4 AT V+9
420 VLIN V+2,V+9 AT H+4
430 HLIN H+2,H+4 AT V+5
440 HLIN H+2,H+4 AT V+6
450 RETURN
460 H = 18: V = 10
470 VLIN V+2,V+9 AT H+3
480 PLOT H+2,V+3: PLOT H+1,V+4: PLOT H,V+5
490 HLIN H,H+4 AT V+6
500 RETURN

176

r- n
g

510 H = 18: V = 10
520 HLIN H,H+4 AT V+2
530 VLIN V+2,V+4 AT H
540 HLIN H,H+3 AT V+5
550 VLIN V+6,V+8 AT H+4
560 HLIN H,H+4 AT V+9
570 RETURN

Change the loop in line 90 to either shorten or lengthen the interval
used to read switch responses. The precise time to actually complete the loop
interval will depend on the size of the program and the number of statements
contained within the loop.

90 FOR D = 1 TO 100
90 FOR D = 1 TO 200
90 FOR D = 1 TO 800

Computational Problems

(about a two second interval)
(about a four second interval)
(about an eight second interval

The MATH PROBLEMS program shown below illustrates how math computational
skills can be presented in a single switch format. For this program, primary
addition facts are displayed so that each addend is a number between 0 and 9.

For each item, problems can range from 0+0 to 9+9. The problem format is
easily controlled to present certain types of facts, or facts within a
specific difficulty range.

After the problem has been displayed, the program automatically creates
possible answers to scan, one of which is the correct answer.

10 REM MATH PROBLEMS
20 REM
30 HOME
40 X = INT(RND(1)*10)
50 Y = INT(RND(1)*10)
60 H = 18: IF X < 10 THEN H = 19
70 VTAB 5: HTAB H: PRINT X
80 VTAB 7: HTAB 17: PRINT "+"
90 H = 18: IF Y < 10 THEN H = 19
100 VTAB 7: HTAB H: PRINT Y
110 VTAB 8: HTAB 17: PRINT "
120 CA = X+Y
130 NC = 4
140 ST = 5
150 FOR L = 1 TO 750: NEXT L
160 CP = INT(RND(1)*NC+1)
170 IF CA-CP+1 > -1 THEN 190
180 CP = CP-1: GOTO 170
190 AL(CP) = CA
200 FOR K = 1 TO NC
210 IF K = CP THEN 230
220 AL(K) = CA-CP+K
230 VTAB 10+K*2: HTAB 18
240 IF AL(K) < 10 THEN PRINT " ";

250 PRINT AL(K): NEXT K
2PO VL = 10
A/0 SP = 1
280 FOR L = 1 TO 250: NEXT L
290 VTAB VL+SP*2: HTAB 18
300 IF AL(SP) < 10 THEN PRINT " ";

310 INVERSE
320 PRINT AL(SP): NORMAL

177

3 CJ

330 FOR D = 1 TO ST*15
340 IF PEEK(-16287) > 127 THEN 420
350 IF PEEK(-16384) = 155 THEN 490
360 NEXT D
370 VTAB VL+SP*2: HTAB 18
380 IF AL(SP) < 10 THEN PRINT " ";

390 PRINT AL(SP)" "

400 SP = SP+1: IF SP < = NC THEN 280
410 SP = 1: GOTO 280
420 IF SP = CP THEN 440
430 GOTO 470
440 VTAB VL+CP*2: HTAB 9
450 INVERSE
460 PRINT "CORRECT!";: NORMAL
470 FOR L = 1 TO 1500: NEXT L
480 GOTO 30
490 POKE -16368,0
500 END

For each item presented in the above program, two random numbers are
generated in lines 40 and 50. The RND(1) function generates a real number

greater than or equal to 0 and less than 1. In immediate execution mode,
enter PRINT RND(1) and a value >=0 and <1 is displayed:

PRINT RND(1)
.551252583

If the number produced by RND(1) is .551252583, this value is multiplied

by 10 (lines 40 and 50) or .551252583 X 10 = 5.51252583. The INT function

then converts this value to an integer so that X is set to 5. Because the

number generated by RND(1) is greater than or equal to 0 and less than 1,

statements 40 and 50 produce values from 0 to 9:

By changing statements 40 and 50, the size of the addends used in each

math addition fact presented can be controlled. The following illustrates
different ways in which values can be confined within specific ranges:

STATEMENT

INT(RND(1)*5)
INT(RND(1)*5+1)
INT(RND(1)*5+5)
INT(RND(1)*20)
INT(RND(1)*10+10)
INT(RND(1)*50+50)
INT(RND(1)*1000)
INT(RND(1)*11-5)

RANGE

0 to 4
1 to 5
5 to 9
to 19
to 19

50 to 99
0 to 999
-5 to 5

Presenting the same sequence of problems each time the program is run is

accomplished by beginning the program with a negative number in the RND

statement. When this i done, all subsequent random numbers aenerated follow

a specified sequence (and each negative number results in a different random

number sequence):

25 X = RND(-12)

To change the MATH PROBLEMS program so that subtraction problems are
displayed, lines 80 and 120 (which is used to set CA to the correct answer)

are changed:

55 X = X + Y
80 VTAB 7: HTAB 17: PRINT "-"

178

120 CA = X Y

Multiplication problems are created by deleting line 55 and then making
these changes:

55
80 VTAB 7: HTAB H: PRINT "X"
120 CA = X * Y

As with most math problems, each problem can be displayed in various ways
such as using a vertical or single line format. For division a single line
format is used. To present division facts first delete lines 60 through 120
and then add the following:

DEL 60,120

60 CA = X
70 X = X * Y
80 VTAB 7: HTAB 15
90 PRINT X" / "Y" = "

Division problems are created by using the product of X and Y as the

dividend and designating Y as the divisor. If X is 5 and Y is 8, then the
dividend is 40 and the divisor 8 and the answer 5 (or the initial value
generated by X). In this case, the line problem would be displayed as

40 / 8 =

Algebra: Just as students can develop very sophisticated single switch
reading skills, a similar high level of achievement can involve mathematics.
The following modify the MATH PROBLEMS program results in problems requiring
the addition of signed numbers which are displayed as line problems:

40 X = INT(RND(1)*11-5)
50 Y = INT(RND(1)*11-5)
60
70
80
90
100 VTAB 8: HTAB 15
110 PRINT X" + "Y" = "
120 CA = X+Y
170
180

Open -Ended Scanning

The single switch programs presented thus far have used either a simple
switch response or multiple-choice scanning routine. It is possible to
enhance a scan routine to select whatever answer the student might want to

enter. For example, a procedure that scans the numbers 0 to 9 can be used so
that the student selects the first number of the answer, the next number, etc.

until the entire answer has been selected. This open-ended format eJ.Lminates
the guessing possibility associated with multiple-choice items, but the switch

response required is definitely more complex than a simple scan procedure

10 REM OPEN-ENDED SCAN
20 REM
30 HOME
40 X = INT(RND(1)*10)
50 Y = INT(RND(1)*10)

179

60 H = 18: IF X < 10 THEN H = 19
70 VTAB 5: HTAB H: PRINT X
80 VTAB 7: HTAB 17: PRINT "+"
90 H = 18: IF Y < 10 THEN H = 19
100 VTAB 7: HTAB H: PRINT Y
110 VTAB 8: HTAB 17: PRINT "
120 CA = X+Y
130 ST = 8
140 CA$ = ""
150 S = -1
160 VTAB 17: HTAB 9
170 PRINT "R ";
180 FOR K = 0 TO 9
190 PRINT K" ";: NEXT K
200 FOR L = 1 TO 750: NEXT L
210 VTAB 17: HTAB 11+5 *2
220 INVERSE: IF S > -1 THEN 250
230 VTAB 17: HTAB 9
240 PRINT "R": GOTO 260
250 PRINT S
260 NORMAL
270 FOR 7.1 = 1 TO ST*10
280 IF 1)AEK(-16287) > 127 THEN 380
290 IF PEEK(-16384) = 155 THEN 500
300 NEXT D
310 VTAB 17: HTAB 11+5 *2
320 IF S > -1 THEN 350
330 VTAB 17: HTAB 9
340 PRINT "R": GOTO 360
350 PRINT S
360 S = S+1: IF S > 9 THEN S = -1
370 GOTO 210
380 IF S = -1 THEN 440
390 CA$ = CA$ + STR$(S)
400 VTAB 10: HTAB 1: CALL -868
410 H = LEN(CA$)
420 VTAB 10: HTAB 20-H: PRINT CA$
430 GOTO 150
440 IF CA = VAL(CA$) THEN 460
450 GOTO 480
460 VTAB 14: HTAB 15
470 PRINT "CORRECT!"
480 FOR L = 1 TO 1500: NEXT L
490 GOTO 30
500 POKE -16368,0
510 END

The open-ended scan procedure scans numbers 0 though 9 and stores each
number selected in CA$ (see line 390). Selecting R at the beginning of the
scan list signifies a RETURN and indicates that the answer selected has been

entered and the answer should be evaluated. If the actual answer in CA is
equal to the value in CA$ (after CA$ has been converted to a numeric value),

CORRECT is printed.

To increase or decrease the amount of scan time, increase or decrease
variable ST in line 130 (or adjust the timing loop in line 270). To flash the

CORRECT prompt, enter the following two lines:

465 FLASH
475 NORMAL

180

Large Font Math

Although the programs described in this chapter can be modified using the
large character set, developing math single switch programs in high-resolution
graphics is not always an easy task. As is the case with reading, a large
screen character set limits the amount of information that can be displayed
on screen at any given time. Nonetheless, the following two programs
illustrate how the large font character set can be used to generate math
problems.

The FONT COUNT program is a very simple modification of the NUMBER COUNT
program shown at the beginning of this chapter in that the essence of the
program is to display the characters 0 through 9. Each time the switch is
engaged, N is incremented by 1 and the next number in the sequence is

generated. When the program is first run, N is first set to 48 which
corresponds to the LASCII shape 0. After N has been incremented to the
highest value or 57 and 9 displayed, N is re-set to 48 and the number sequence

is repeated.

Because this is a very easy program to use and understand, experiment
with the program by modifying the HCOLOR statement in line 110 and the shape
position values (which are currently set to 125 and 75) in line 130.

10 REM FONT COUNT
20 REM
30 HOME
40 PRINT CHR$(4); "BLOAD LASCII"
50 A = PEEK(43634) + PEEK(43635) * 256
60 T = INT(A/256)
70 POKE 232,A-T*256
80 POKE 233,T
90 N = 48
100 HGR
110 HCOLOR=7
120 SCALE=1
130 DRAW N AT 125,75
140 N = N+1: IF N > 57 THEN N = 48
150 IF PEEK(-16287) > 127 THEN 150
160 IF PEEK(-16287) > 127 THEN 100
170 IF PEEK(-16384) = 155 THEN 190
180 GOTO 160
190 POKE -16368,0
200 TEXT: HOME
210 END

The FONT MATH PROBLEMS program generates a series of up to N addition

fact problems. As with the MATH PROBLEMS, X and Y are generated as the

problem addends. The position of the correct answer is determined by the
variable CP (line 160), and the incorrect alternatives are then generated.

The problem is displayed by first transforming the problem to a string
value in line 280 and then calling the character display subroutine beginning

in line 310. The alternatives are also displayed by transforming each of the

possible answers to the string variable P$ (line 410) and then calling the
character display routine in 310.

10 REM FONT MATH PROBLEMS
20 REM
30 HOME
40 N = 5
50 NC = 4
60 ST = 5

181

`4. r

70 PRINT CHR$(4);"BLOAD LASCII"
80 A = PEEK(43634) + PEEK(43635) * 256
90 T = INT(A/256)
100 POKE 232,A-T*256
110 POKE 233,T
120 FOR MP = 1 TO N
130 X = INT(RND(1)*10)
140 Y = INT(RND(1)*10)
150 CA = X+Y
160 CP = INT(RND(1)*NC+1)
170 IF CA-CP+1 > -1 THEN 190
180 CP = CP -1: GOTO 170
190 AL(CP) = CA
200 FOR K = 1 TO NC
210 IF K = CP THEN 230
220 AL(K) = CA-CP+K
230 NEXT K
240 NA = NA+1
250 HGR: HCOLOR=7
260 SCALE=1
270 V = 15: H = 70
280 P$ = STR$(X) + " + " + STR$(Y) + " = "

290 GOSUB 310
300 GOTO 380
310 FOR L = 1 TO LEN(P$)
320 C$ = MID$(P$,L,1)
330 C = ASC(C$)
340 DRAW C AT H,V
350 H = H+13
360 NEXT L
370 RETURN
380 V = 25
390 FOR K = 1 TO NC
400 V = V+25: H = 100
410 P$ = STR$(AL(K)): GOSUB 310
420 NEXT K
430 POKE -16368,0
440 V = 50: H = 75
450 SP = 1: NS = 1
460 HCOLOR=7
470 DRAW 31 AT H,V
480 FOR D = 1 TO ST*15
490 IF PEEK(-16287) > 127 THEN 560
500 IF PEEK(-15384) = 155 THEN 670
510 NEXT D
520 HCOLOR=0: DRAW 31 AT H,V
530 V = V+25: IF V > 25+25*C TFEN V = 50
540 SP = SP+1: IF SP > NC THEN SP = 1
550 GOTO 460
560 V = 25+SP*25: H = 100
570 P$ = STR$(AL(SP))
580 HCOLOR=0: GOSUB 310
590 H = 115: HCOLOR=7: GOSUB 310
600 IF SP = CP THEN 620
610 GOTO 650
620 P$ = "CORRECT!"
630 H = 155: GOSUB 310
640 SC = SC+1
650 FOR D = 1 TO 2000: NIACT D
660 NEXT MP
670 POKE -16368,0
680 TEXT: HOME

182

690 VTAB 7
700 PRINT "NUMBER = "N
710 PRINT "ATTEMPTED = "NA
720 PRINT "CORRECT = "SC
730 END

The number of problems presented is determined by N in line 40 and the
number of alternatives per problem by NC in line 50. To display five
alternatives, use HGR2 in order use the entire high-resolution graphics
screen:

50 NC = 5
250 HGR2: HCOLOR=7

Subtraction: To present subtraction fact problems, the minuend is the
sum of X and Y and the subtrahend is Y so that each problem has the form (X+Y)

Y = X. "The minuend is first set to X+Y in line 145, the correct answer to

X-Y in line 150, and the subtraction form of the problem to P.$ in line 280:

145 X = X+Y
150 CA =X-Y
280 P$ = STR$(X) + " - " + STR$(Y) + " = "

Be sure to insert the quotation marks as shown. In line 280 the entire
problem is converted to a string. The process of adding the four separate
string parts (the sum of X and Y, the minus sign, the subtrahend and the equal
sign) is called concatenation which entails adding strings together using the

plus sign.

Following an incorrect response, no feedback is given. To indicate that

a response is incorrect, an X can be placed in front of the incorrect
alternative selected:

605 HCOLOR=0: DRAW 31 AT 75,V
606 HCOLOR=7: DRAW 88 AT 75,V

Additional information following an incorrect response (e.g., the correct
answer) could be provided as deemed appropriate. A routine could also be

added to first provide correct answer feedback following an incorrect

response, and then re-presenting the problem. As is the case with all single

switch programs, specific student needs must be considered when designing
various program options.

Multiplication: Delete line 45 if the above subtraction format has been
used, set CA to the product of X and Y in line 30, and modify line 280.

145
150 CA = X*Y
280 P$ = STR$(X) + "X" + STR$(Y) + "

Division: Division problems are generated with no remainders by setting

the answer to Y, the dividend to the product of X and Y, and the divisor to

X. If X (i.e., the divisor) is 0, a new X value is generated (line 135).

135 IF X = 0 THEN 130
150 CA = Y
280 P$ = STR$(X*Y) + " / " + STR$(X) + "="

The use of graphics allows the incorporation of symbols not readily
available with normal text symbols. Problems can be displayed using the

183

4
C

symbol i by making these modifications:

280 P$ = STR$(X) + " " + STR$(X*Y)
331 IF C = 32 THEN 333
332 GOTO 340
333 HPLOT H+5,10 TO H+35,10
334 HPLOT H,29 TO H+5,10
336 GOTO 350

or the symbol could be used by making these modifications:

280 P$ = STR$(X*Y) + " " +STR$(X) + "="
333 HPLOT H-6,22 TO H+4,22
334 HPLOT H-2,20 TO H,20
335 HPLOT H-2,24 TO H,24

Single Switch Math Systems

By integrating several components within a program, a program system can
be developed that provides considerable program use flexibility. The

following two programs, MATHSCAN and SWITCH CALCULATOR, integrate addition,
subtraction, multiplication and division activities in a single switch format.

Single Switch Primary Math Facts

MATHSCAN can be used to provide computational practice in each of the
major operations using a single switch format. When this program is run,
three values must be entered: scan speed, problem type, and difficulty level.
If the RETURN key is pressed after one or all of the input prompts, the

program sets the control variables to the built-in default values.

The number of items presented for each task is determined by variable N

in line 230. The current value of N is 10. The program is set so that the
same item is not repeated (e.g., if 3 X 4 is presented, 4 X 3 is not presented
during the same task). Because of this, N cannot be set higher than 15 for
addition, subtraction, and multiplication. For division, N cannot be set
higher than 10. The matrix M (see line 30) is used to insure that the same
problem is not presented twice during the same task.

The number of alternatives is set by SA in line 220. To change the number
of alternatives presented with each item to 3, the following modification
would be made:

220 SA = 3

The number. of alternatives comprising each list can range from 2 to as many

as 6. For each item presented, the program uses a randomization routine when
creating and displaying alternatives.

10 REM MATHSCAN
20 REM
30 DIM M(4,99)
40 HOME
50 VTAB 2: HTAB 16
60 PRINT "MATHSCAN"
70 VTAB 22: HTAB 3
80 PRINT "(PRESS RETURN AFTER EACH DATA ENTRY)"
90 VTAB 5
100 INPUT "SCAN SPEED (1 = "AST TO 10=SLOW): ";SP$

184

C f.:

110 IF SP$ < "1" THEN SP$ = "5"
120 SP = VAL(SP$)
130 PRINT
140 INPUT "PROS (1 =ADD, 2=SUB, 3=MUL, 4=DIV): ";T$
150 T = VAL(TS): IF T < 1 OR T > 4 THEN T = 1
160 PRINT
170 INPUT "DIFFICULTY (1=EASY, 2=AVE, 3=DIF): ";D$
180 D = VAL(DS): IF D < 1 OR D > 3 THEN D = 1
190 R = AND(-PEEK(78)*100+PEEK(79))
200 S$(1) = "+": S$(2) = "-": S$(3) = "X"
210 HOME
220 SA = 4
230 N = 10
240 CN = CN+1: IF CN > N THEN 1060
250 IF D = 2 THEN 300
260 IF D = 3 THEN 360
270 X = INT(RND(1)*5)
280 Y = INT(RND(1)*5)
290 GOTO 380
300 X = INT(RND(1)*10)
310 Y = INT(RND(1)*10)
320 IF D < > 2 THEN 380
330 IF X < 5 AND Y < 5 THEN 300
340 IF X > 4 AND Y > 4 THEN 300
350 GOTO 380
360 X = INT(RND(1)*5+5)
370 Y = INT(RND(1)*5+5)
380 IF M(T,X*10+Y) = 1 THEN 250
390 IF M(T,Y*10+X) = 1 THEN 250
400 M(T,X*10+Y) = 1
410 M(T,Y*10+X) = 3
420 IF T = 4 AND Y 0 THEN 250
430 IF Y = 0 THEN 250
440 IF T = 1 THEN CA = X+Y
450 IF T = 2 OR T = 4 THEN CA = X
460 IF T = 2 THEN X = X+Y
470 IF T = 3 THEN CA = X*Y
480 HOME
490 HC = 19
500 IF T = 2 AND X > 9 THEN MC = HC-1
510 IF T = 4 THEN 560
520 VTAB 8: HTAB HC. PRINT X
530 VTAB 9: HTAB 17: PRINT S$(T)
540 VTAB 10: HTAB 17: PRINT "----"
550 GOTO 580
560 VTAB 8: HTAB 17: PRINT "
570 VTAB 9: HTAB 16: PRINT Y") "X*Y
580 FOR L = 1 TO 250: NEXT L
590 CP = INT(RND(1)*SA+1)
600 IF CA-CP+1 > -1 THEN 620
610 CP = CP-1: GOTO 600
620 AL(CP) = CA
630 FOR K = 1 TO SA
640 IF K = CP THEN 660
650 AL(K) = CA-CP+K
660 VTAB 10+K*2: HTAB 18
670 IF AL(K) < 10 THEN PRINT SPC(1)
680 PRINT AL(K): NEXT K
690 VL = 10: SL = 1
700 FOR L = 1 TO 250: NEXT L
710 VTAB VL+SL*2: HTAB 18
720 IF AL(SL) < 10 THEN PRINT SPC(1)

185

730 INVERSE
740 PRINT AL(SL): NORMAL
750 FOR ST = 1 TO SP*10
760 IF PEEK(-16286) > 127 OR PEEK(-16287) > 27 THEN 850
770 KY = PEEK(-16384) : IF KY > 127 THEN 850
780 IF PDL(0) < 20 THEN 850
790 NEXT ST
800 VTAB VL+SL*2: HTAB 18
810 IF AL(SL) < 10 THEN PRINT SPC(1)
820 PRINT AL(SL)" "

830 SL = SL+1: IF SA >= SL THEN 700
840 SL = 1: GOTO 700
850 POKE -16368,0
860 IF SL = CP THEN 970
870 VTAB VL+SL*2: HTAB 18
880 IF AL(SP) < 10 THEN PRINT SP(1)
890 PRINT AL(SL)" "

900 VTAB VL+CP*2: HTAB 18
910 PRINT " >";
920 HTAB 18: IF CA < 10 THEN PRINT SPC(1)
9'30 INVERSE
940 PRINT CA;: NORMAL: PRINT "
950 FOR L = 1 TO 1000: NEXT L
960 GOTO 1030
970 VTAB VL+CP*2: L7TAB 9
980 INVERSE
990 PRINT "CORRECT!";: NORMAL
1000 CO = C0+1
1010 FOR L = 1 TO 2500: NEXT L
1020 CN = CN+1
1030 FOR L = 1 TO 1000: NEXT L
1040 IF KY = 155 THEN 1060
1050 GOTO 240
1060 HOME: VTAB 5
1070 PRINT "RESULTS:"
1080 PRINT: PRINT "NUMBER OF ITEMS = "CN
1090 PRINT "NUMBER CORRECT = "CO
1100 PRINT "PERCENT CORRECT = "INT(CO/CN*100+.5)
1110 END

Switch Calculator

As is the case with language boards, matrix scanning can be used in
conjunction with single switch math programs. The SWITCH CALCULATOR program
displays a selection matrix comprised of four rows and four columns:

1 2 3 4

5 6 7 8

9 0 +

X /

The scanning process is twofold: 1) Each row is scanned by highlighting
the rows in sequential order until a selection is made; 2) after a row has

been selected, each row element is scanned until a selection is made.

Following each value entered, an operation is selected: addition (+),

subtraction (-), multiplication (X), or division (/). After the second number

has been entered, the = symbol is used to display the answer.

186

C.'
r

Before the SWITCH CALCULATOR screen is displayed, the scan speed is
entered. Begin using the program with simple problems (e.g., 2 + 1 =).

Multiple digit numbers can be used by simply selecting digits from the matrix
before selecting the problem operation.

10 REM SWITCH CALCULATOR
20 REM
30 S$(1) = "1 2 3 4"
40 S$(2) = "5 6 7 8"
50 S$(3) = "9 0 + -"
60 S$(4) = "X / . ="
70 FOR K = 1 TO 17: H$ = H$ + "-": NEXT
80 SM = 10
90 HOME
100 VTAB 2: HTAB 12
110 PRINT "SWITCH CALCULATOR"
120 VTAB 22: HTAB 3
130 PRINT "(ENTER SCAN SPEED AND PRESS RETURN)"
140 VTAB 9: HTAB 1
150 INPUT "SCAN SPEED (1=FAST, 10=SLOW): ";ST$
160 IF ST$ < "1" THEN ST$ = "1"
170 ST = VAL(ST$)
180 VTAB 3: HTAB 1: CALL -958
190 VTAB 4: HTAB 12: PRINT H$
200 VTAB 12: HTAB 12: PRINT H$
210 POKE 35,10
220 VX = 5: HX = 23
230 VTAB VX: HTAB HX
240 GOSUB 500
250 IF KY = 195 OR KY . 227 THEN 220
260 AN = VAL(N$)
270 0$ = C$
280 PRINT: HTAB 13
290 PRINT 0$;: HTAB 23
300 VX = PEEK(36)+1: HX = PEEK(37)+1
310 GOSUB 500
320 IF KY = 195 OR KY = 227 THEN 220
330 VTAB VX: HTAB HX
340 IF N$ = "" THEN 270
350 B$ = N$: B = VAL(B$)
360 IF 0$ = "+" THEN AN = AN+B
370 IF 0$ = "-" THEN AN = AN-B
380 IF 0$ = "X" THEN AN = AN*B
390 IF 0$ = "/" THEN AN = AN/B
400 X = 0: IF C$ = "=" THEN X = 3: GOTO 420
410 GOTO 270
420 VTAB VX+1: HTAB 13
430 PRINT C$;
440 AS = STR$(AN): N$ = A$
450 0$ = C$
460 GOSUB 680
470 VX = VX+X: VTAB VX
480 IF C$ = "=" THEN 220
490 GOTO 310
500 N$ = "": M=0
510 HX = PEEK(36)+1: VX = PEEK(37)+1
520 IF C$ = "=" THEN EC = 1
530 GOSUB 770
540 IF KY = 195 OR KY = 227 THEN RETURN
550 VTAB VX: HTAB HX
560 IF C$ = "+" OR C$ = "-" OR C$ = "X" THEN RETURN

570 IF C$ = "/" OR C$ = "=" THEN RETURN

187

r- , ,

580 N$ = N$+C$
590 IF EC = 0 THEN' 640
600 FOR K = 5 TO 11: VTAB K: HTAB 1
610 CALL -868: NEXT K
620 EC = 0
630 VX = 5: VTAB VX: HTAB HX
640 IF LEN(N$) > 8 THEN N$ = LEFT$(N$,8)
650 L = LEN(N$)
660 GOSUB 680
670 GOTO 530
680 FOR L = 1 TO LEN(N$)
690 L$ = MID$(N$,L,1)
700 IF L$ = "." THEN M = L
710 NEXT L: IF M > 0 THEN 730
720 HTAB 22-LEN(N$): GOTO 740
730 HTAB 23-M
740 PRINT N$;
750 IF C$ = "=" THEN PRINT
760 RETURN
770 POKE 35,23: VP = 1
780 FOR J = 1 TO 4
790 VTAB J*2+12: HTAB 15
800 PRINT S$(J): NEXT J
810 INVERSE
820 VTAB 14: HTAB 15
830 PRINT S$(VP)
840 NORMAL
850 GOSUB 1170
860 IF KY = 195 OR KY = 227 THEN RETURN
870 IF SW = 1 THEN SW = 0: GOTO 950
880 VTAB VP*2+12: HTAB 15
890 PRINT S$(VP)
900 VP = VP+1: IF VP > 4 THEN VP = 1
910 VTAB VP*2+12: HTAB 15: INVERSE
920 PRINT S$(VP)
930 NORMAL
940 GOTO 850
950 VTAB VP*2+12: HTAB 15
960 PRINT S$(VP)
970 INVERSE
980 VTAB VP*2+12: HTAB 15
990 PRINT MID$(S$(VP),1,1)
1000 NORMAL
1010 HP = 15
1020 GOSUB 1170
1030 IF KY = 195 OR KY = 227 THEN RETURN
1040 VTAB VP*2+12: HTAB HP
1050 PRINT MID$(S$(VP),HP -14)
1060 IF SW = 1 THEN 1130
1070 HP = HP+3: IF HP > 24 THEN HP = 15
1080 VTAB VP*2+12: HTAB HP
1090 INVERSE
1100 PRINT MID$(S$(VP),HP -14,1)
1110 NORMAL
1120 GOTO 1020
1130 SW = 0
1140 C$ = MID$(S$(VP),HP-14,1)
1150 POKE 34,7: POKE 35,18
1160 RETURN
1170 FOR D = 1 TO ST*SM
1180 IF PDL(0) < 20 THEN 1220
1190 IF PEEK(-16286) > 127 OR PEEK(-16287) > 127 THEN

188

1220
1200 KY = PEEK(-16384): IF KY > 127 THEN 1220
1210 NEXT D: SW = 0:RETURN
1220 POKE -16368,0: SW = 1
1230 FOR D = 1 TO 300 + (ST*SM*7): NEXT D
1240 IF KY = 155 THEN 1320
1250 IF KY = 195 OR KY = 227 THEN 1270
12602 GOTO 1310
1270 FOR J = 5 TO 11: VTAB J: HTAB 1
1280 CALL -868: NEXT J: GOTO 1300
1290 GOTO 1300
1300 SW = 0
1310 RETURN
1320 POKE 34,0: POKE 35,24: HOME
1330 END

Chapter 8

Single Switch Reading

From Readiness to Reading

When an individual has deL,nstrated the ability to discriminate, the time

is right to begin experimenting with reading readiness. The term
"experimenting" is not used in a research vain, but rather to emphasize that
many different features regarding scan routines must be considered in order
to find those factors which best meet a specific individual's learning needs.
The factors to be considered include the type of scan, scan speed, item,

presentation (e.g., presenting items tachistoscopically) and feedback.

The LETTER RECOGNITION program described below illustrates many of the
modifications that can be made to enhance a single switch scan program. This
easy-to-use program can be modified to develop a variety of matching and short

term memory skills. If the student does not understand the task or task
content, use one of the low-resolution scan routines presented in Chapter 3.

10 REM LETTER RECOGNITION
20 REM
30 A = 4
40 FOR X= 1 TO 7
50 HOME
60 FOR K = 1 TO A
70 S$(K) = CHR$(RND(1)*26+65)
80 FOR L = 0 TO K-1
90 IF S$(K) = SS(L) THEN 70
100 NEXT L
110 VTAB 7+K*2: HTAB 19
120 PRINT S$(K)
130 NEXT K
140 CP = INT (RND(1)*A+1)
150 VTAB 5: HTAB 19
160 PRINT S$(CP)
170 INVERSE
180 VTAB 9+VP: HTAB 15
190 PRINT " ": NORMAL
100 FOR K = 1 TO 100
210 IF PEEK(-16287) > 127 THEN 280
220 NEXT K
230 VTAB 9+VP: HTAB 15
240 PRINT " "

250 VP = VP+2
260 IF VP > A*2-2 THEN VP = 0
270 GOTO 170
280 IF CP = VP/2+1 THEN 300
290 GOTO 320
300 VTAB 20: HTAB 15
310 PRINT "CORRECT!"
320 FOR L = 1 TO 2000: NEXT L
330 VP = 0
340 NEXT X

For each item presented, four letters are randomly generated and stored

in variables SS(1), S$(2), S$(3), and S$(4). The loop in lines 80-100 insures
that all four letters are different. One of the four letters is designated
as correct response (see line 140).

190

4_ .

After the four alternatives are displayed, each alternative is scanned.
If the switch is engaged while an alternative is being scanned, that
alternative is evaluated as student's selected answer. If the alternative
selected matches the stimulus, a CORRECT prompt is shown. If the alternative
does not match the stimulus, no feedback is given.

The program can be modified to include control variables to specify the
number of items and scan speed. The number of items can be preset by

31 HOME: VTAB 7
32 INPUT "NUMBER OF ITEMS? ";N
40 FOR X= 1 TO N

The scan speed can be specified by adding these lines:

33 VTAB 7
34 INPUT "SCAN SPEED (1=FAST, 9=SLOW)? ";SP
200 FOR K = 1 TO 35*SP

If the task is too difficult, we can limit the number of choices by
changing variable A in line 30. In order to present three alternatives rather
than four, reset variable A in line 30:

30 A = 3

As the program is now written, a solid bloc cursor is used to scan each

alternative. This is accomplished by displaying two "blank" spaces in inverse
mode. To change the scan type, make the following modification:

spo PRINT "->": NORMAL

Each of the alternatives can be scanned by using alternative numbers.
The following scans each alternative using 1, 2, 3 and 4 in sequential order:

190 PRINT VP/2+1: NORMAL

Or letters can be used as the cursor:

190 PRINT CHR$(65+VP/2)

Very often a small or subtle change can give a program a better feel.

For example, when the cursor moves from one alternative to the next, there is

no delay. A short delay is accomplished by inserting a delay loop in line

225:

225 FOR D = 1 TO 100: NEXT D

Line 70 indicates the type of character ASCII character generated. This
statement can be modified to present numbers, lowercase letters, or keyboard

symbols.

Change line 70 to display numbers 0 to 9 by

70 S$(K) = CHWRND(1)*10+48)

Or change the line to display lowercase letters by

70 S$(F) = CHR$(RND(1)*26+97)

Finally, set variable A in line 30 to 5, and then change line 70 to
display the whole array of keyboard symbols (and thus create a fairly
difficult matching task):

191

30 A = 5
70 S$(K) = CHR$(RND(1) *95 +33)

Coding

The concept underlying the LETTER RECOGNITION program can be used to
create a coding task that is often used in psychological assessment. The
student is given the code such as 1.*, 2 = +, 3=ft, and when the stimulus symbol
is shown, the student enters the corresponding response symbol. If 1 is

shown, the student enters * (or whatever corresponds to 1).

The CODING program creates a new code each time the program is run. The

following is an example of the type of code that might be generated:

V

1 2 3 4 5 6 7 8 9

For each item presented, a stimulus symbol is randomly selected and

displayed. Next, four alternatives are listed and scanned from left to right.

The task is to select the alternative that matches the stimulus code which is

displayed on the screen throughout the task.

The CODING task continues until the Esc key is pressed.

10 REM CODING
20 REM
30 SP = 10
40 NC = 4
50 FOR K= 1 TO 9
60 R$(K) = STR$(K)
70 READ V$(K): NEXT K
80 DATA *,),+,-,#,V, (,$,/
90 FOR K= 1 TO 9
100 R = INT(RND(1)*9+1)
110 IF V(R) = 1 THEN 100
120 V(R) = 1
130 S$(K) = V$(R)
140 NEXT K
150 HOME
160 N = N+1
170 FOR L = 1 TO 1000: NEXT L
180 VTAB 3: HTAB 18
190 PRINT "CODING"
200 FOR K = 1 TO 9
210 VTAB 7: HTAB 6+K*3
220 PRINT S$(K)
230 VTAB 9: HTAB 6+K*3
240 PRINT R$(K)
250 NEXT K
260 R = INT(RND(1)*9+1)
270 CR$ = R$(R)
280 VTAB 15: HTAB 9
290 PRINT CR$" = ";
300 FOR L= 1 TO 9
310 A(L) = 0: S(L) = 0: NEXT L
320 RS = INT(RND(1)*NC+1)
330 A$(RS) = S$(R)
340 FOR K = 1 TO NC
350 RN = INT(RND(1)*9+1)

192

360 IF K = RS THEN 400
370 A$(K) = S$(RN)
380 IF A$(K) = S$(R) THEN 350
390 IF S(RN) = 1 THEN 350
400 S(RN) = 1
410 PRINT " ";A$(K)" ";

420 NEXT K: PRINT
430 NK = 1
440 VTAB 16: HTAB 12+NK*5
450 INVERSE: PRINT " "

460 NORMAL
470 FOR D = 1 TO SP*10
480 IF PEEK(-16287) > 127 550
490 IF PEEK(-16384) = 155 THEN 630
500 NEXT D
51) VTAB 16: HTAB 12+NK*5
520 PRINT " "

530 NK = NK+1: IF NK > NC THEN 430
540 GOTO 440
550 IF NK = RS THEN 570
560 GOTO 610
570 C = C+1
580 VTAB 20: HTAB 17
590 FLPSH: PRINT "CORRECT!"
600 NORMAL
610 FOR L = 1 TO 2500: NEXT L
620 GOTO 150
630 VTAB 20
640 PRINT "NUMBER = "N-1
650 PRINT "CORRECT = "C
560 END

The scan speed is determined by variable SP in line 30, and the number
of alternatives comprising the alternative list for each item is determined

by NC in line 40. The number of alternatives for items can be set to either

2, 3, 4 or 5.

The response symbols that correspond to the nine stimulus symbols are
contained in the DATA statement in line 80:

80 DATA *,),+,-,#,V,(4,/

To change the symbols to letters, modify line 80:

80 DATA A,B,C,D,E,F,G,H,I

Word Recognition

Single switch programs can be created using many different reading,
writing and/or language arts activities. The READ program described in this
section is useful for developing sight-word recognition skills and to review

content area vocabulary. Because of the space required to display letters in

graphics mode, this program is presented in normal text screen format.

The READ program operates by first reading up to 50 words from DATA

statements. The program continues to read words until an error occurs at

which point the ONERR statement in line 80 branches to line 120. This routine

causes the program to automatically read the DATA statements, and to count the
number of items (as indicated by the variable N) read from DATA statements

After the N words have been read, one of the words from the W$ vector

193

(`14 BEST COPY AVAILABLE

containing the words is selected and displayed on screen. For each word
displayed, four alternatives are selected from other words in the word pool.
The task is to engage the switch when the target word displayed at the top of

the scren is scanned in the word list. The task continues until all the
words have been presented.

The number of alternatives presented for each task item is determined by

variable AL in line 60. The number of alternatives should be set to a value

from 2 to as many as 8. To increase or decrease the length of time each
alternative is scanned, increase or decrease the value of ST in line 70. The

following is an example of a target word and four alternatives:

LAMP

PENCIL
RADIO
SNOW

I LAMP

The variable RW is used to select a word from the word pool, and CP
signifies the position of the correct alternative. The W(RW) vector in lines

150 and 160 insures that each word appears no more than once for each task

run.

The type of cursor used is changed by modifying variable CR$ in line 50.

As the program is now written, CR$ is set to two blank spaces. This is shown

in line 50 as

Or

50 CR$ = "

50 CR$ = CHR$(32) + CHR$(32)

To change the cursor in CR$ to key board symbols, reset CR$ in line 50,

and then change line 390 as shown:

50 CR$ = "»"
390 PRINT " "

To use more than 50 words in the program, change the dimension statements

in line 30. To present the words in sequential order, set variable RW to W

in line 140 and delete lines 150 and 160.

10 REM READ
20 REM
30 DIM W$(50),W(50),A(50)
40 HOME
50 CR$ = " fi

60 AL = 4
70 ST = 5
80 ONERR GOTO 120
90 N = 1
100 READ W$(N)
110 N = N+1: GOTO 100
120 N = N-1: POKE 216,0
130 FOR W = 1 TO N
140 RW = INT(RND(1)*N+1)
150 IF W(RW) = 1 THEN 140
160 W(RW) = 1

194

4!
.)

170 HOME: VL = 7
180 CP = INT(RND(1)*AL+1)
190 A$(CP) = W$(RW)
200 VTAB 5: HTAB 16
210 PRINT A$(CP)
220 FOR K = 1 TO AL
230-IF K = CP THEN 280
240 RN = INT(RND(1)*N+1)
250 IF A(RN) = 1 OR RN = RW THEN 240
260 A(RN) = 1
270 A$(K) = W$(RN)
280 VTAB VL+K*2: HTAB 16
290 PRINT A$(K)
300 NEXT K
310 P = 1
320 INVERSE
330 VTAB VL+P*2: HTAB 13
340 PRINT CR$: NORMAL
350 FOR D = 1 TO ST*30
360 IF PEEK(-16287) > 127 THEN 420
370 NEXT D
380 VTAB VL+P*2: HTAB 13
390 PRINT CR$
400 P = P+1: IF P < = AL THEN 320
410 P = 1: GOTO 320
420 IF P = CP THEN 440
430 GOTO 470
440 VTAB VL+CP*2: HTAB 6
450 INVERSE
460 PRINT "CORRECT!": NORMAL
470 FOR L = 1 TO 2000: NEXT L
480 FOR K = 1 TO N: A(K) = 0: NEXT K
490 NEXT W
500 DATA HAMBURGER,MILK,PLAY,SNOW,

TELEVISION, RADIO, ORANGE, PENCIL. LAMP,
Florida

DATA Statements

The words used in the READ program are contained in a DATA statement in

line 500. These words should be modified to include words of interest to the

student. The following modification illustrates how 10 different words can

be used with the program:

500 DATA MRS. SMITH, basketball, Springfield,
bus,Giant Food, store, Main Street, Pepsi,

Room 324,McDonald's

If desired, and if a large number of words are being used, several DATA

statements can be used:

500 DATA Mrs. Smith, basketball, Springfield
510 DATA bus, Giant Food, store
520 DATA Main Street, Pepsi, Room 324, McDonald's

The only rule to remember is that each data statement must begin with the

word DATA.

195

C C)

Instructional Feedback

Although it is possible to present items in what is sometimes referred
to as "test mode" in that no feedback is given whatsoever, feedback following
a correct response for single switch users is almost always warranted.

However, what type of feedback should be given following an incorrect

response? It is certainly safe to say that sad faces and similar types of
feedback probably does nothing more than to reinforce incorrect responses.
On the other hand, it might be useful on some occasions following an incorrect

response to highlight the correct answer. The following modifications result
in the alternatives displayed on screen being cleared and then the correct
alternative displayed following an incorrect response.

421 VTAB 6: CALL -958
422 FOR L = 1 TO 500: NEXT L
423 VTAB VL+CP*2: HTAB 16
424 PRINT A$(CP)

Although this is a matter of personal instructional preference and

individual need, instructional feedback seems to be most useful for older

students. Some younger students, on the other hand, might not make the
connection between the problem and correct answer (e.g., a student might be

unconcerned whether a correct or incorrect alternative is selected because the

correct answer is displayed following an incorrect response).

Tachistoscopic Techniques

2 A tachistoscope presents stimuli cr a stimulus for a specified period

of time. The READ program is changed to present items tachistoscopically by

adding a time delay loop following the presentation of the stimulus word and
then clearing the line on which the stimulus word is displayed:

215 FOR L = 1 TO 1500: NEXT L
216 VTAB 5: CALL -868

The CALL -868 statement clears screen line 5 where the stimulus item is

displayed.

If desired, after the stimulus word is cleared from the screen, the first
letter of the stimulus word can be provided as a clue:

217 VTAB 5: HTAB 16
218 PRINT LEFT$(A$(CP),1)

The LEFT$ statement is used to print the left-most character of the correct

answer string. A further clue could be given by showing the number of letters
contained in the words by a series of dashes. Be sure to include the
punctuation exactly as shown when making this modification:

218 PRINT LEFT$(A$(CP)..1);
219 FOR L = 1 TO LEN(AS(CP))-1: PRINT "-";: NEXT L

Large Font Scanning

The programs described in this section can be modified for use with the

large font character set LASCII. However, remember that the program will

require considerable modification to accommodate the large screen characters.
As mentioned previously, if a student can use the normal video display mode,

this should be used.

196

The SCAN
character set
sequentially.
1 to 6, where

LETTER FONT program first displays a letter using the large

. Next, a series of alternatives are displayed and scanned
The number of alternatives is set in line 50 and can vary from
a setting of 1 is basically a cause/effect program:

10 REM SCAN LETTER FONT
20 REM
30 DIM W$(26)
40 D$ = CHR$(4): G$ = CHR$(5)
50 WP = 5
60 N = 10
70 HOME
80 VTAB 2: HTAB 14: PRINT "LETTER FONT"
90 VTAB 18
10C PRINT "(PRESS RETURN TO BEGIN)";
110 POKE -16368,0: GET R$
120 IF ASC(R$) = 27 THEN VTAB 23: END
130 PRINT
140 HOME
150 PRINT D$;"BLOAD LASCII"
160 A = PEEK(43634) + PEEK(43635) * 256
170 T = INT(A/256)
180 POKE 232,A-T*256
190 POKE 233,T
200 VTAB 3: HTAB 16: PRINT "LETTER FONT"
210 POKE 216,0: VTAB 22: HTAB 1
220 PRINT "(ENTER CONTROL VALUES AND PRESS RETURN)"
230 VTAB 9: HTAB 1
240 INPUT "SCAN SPEED (1=FAST, 10=SLOW): ";ST$
250 ST = VAL(ST$): IF ST < 1 THEN ST = 1
260 PRINT
270 PRINT "TACHISTOSCOPE (1=0N, 2=OFF): ";TC$
280 POKE -16368,0: HOME
290 FOR X = 1 TO N
300 RW = INT(RND(1)*26)
310 NA = NA+1
320 HGR2: HCOLOR=7
330 SCALE=1
340 P$(1) = CHR$(65 +RW)
350 FOR K= 2 TO WP
360 RN = INT(P.ND(1) *26)
370 IF RW = RN THEN 360
380 P$(K) = CHR$(65+RN)
390 NEXT K
400 V = 10: H = 125
410 W$ = P$(1): GOSUB 450
420 V = 24: H = 125
430 W$ = "-": GOSUB 450
440 GOTO 520
450 FOR L = 1 TO LEN(W$)
460 C$ = MID$(W$,L,1)
470 C = ASC(C$)
480 DRAW C AT H,V
490 H = H+13
500 NEXT L
510 RETURN
520 IF TC$ = "2" THEN 560
530 FOR D = 1 TO 500*ST: NEXT D
540 HGR2
550 HCOLOR=7
560 V = 25

197

C

570 FOR WA = 1 TO WP
580 RN = INT(RND(1)*WP+1)
590 IF A(RN) = 1 THEN 580
600 A(RN) = 1: PC(WA) = RN
610 IF RN = 1 THEN CP = WA
620 V = V+25: H = 125
630 W$ = P$(RN): GOSUB 450
640 NEXT WA
650 POKE -16368,0
660 V = 50: H = 100
670 SP = 1: NS = 1
680 HCOLOR=7
690 DRAW 31 AT H,V
700 FOR D = 1 TO ST*10
710 IF PEEK(-16287) > 127 THEN 780
720 KY = PEEK(-16384): IF KY > 127 THEN 780
730 NEXT D
740 HCOLOR=0: DRAW 31 AT H,V
750 V = V+25: IF V > 25+25*WP THEN V = 50
760 SP = SP+1: IF SP > WP THEN SP = 1
770 GOTO 680
780 POKE -16368,0
790 IF KY = 155 THEN 940
800 V = 25+SP*25: H = 125
810 W$ = P$(PC(SP))
820 HCOLOR=0: GOSUB 450
830 H = 145: HCOLOR=7: GOSUB 450
840 FOR D = 1 TO 750: NEXT D
850 IF SP = CP THEN 870
860 GOTO 890
870 W$ ="*--->": H = 20: GOSUB 450
880 SC = SC+1
890 POKE -16368,0
900 FOR D = 1 'TNO 2000: NEXT D
910 FOR K = 0 'I WP
920 A(K) = 0: NE-2 K
930 NEXT X
940 TEXT: HOME
950 VTAB 7
960 PRINT "NUMBER = "N
970 PRINT "ATTEMPTED = "NA
980 PRINT "CORRECT = "SC
990 END

The following statements illustrate how a program is easily modified for

use with an Echo. The amount of feedback presented via the Echo can be

expanded by modifying the PRINT statement in line 875.

145 PRINT DWBRUN TEXTALKER"
146 HOME: PRINT G$;"0"
435 PRINT G$;"T"
436 PRINT P$(1)
685 PRINT P$(PC(SP))
875 PRINT "CORRECT"

The SCAN WORD FONT program is similar to the SCAN LETTFR FONT program in

terms of the multiple choice format. However, this program has been written
to work in conjunction with an Echo. After the TEXTALKER program has been
run, the value 99 is placed in register 999. If the program is interrupted,
and then re-run, the statement to run the TEXTALKER is by-passed because the

program is already in memory. The same technique is used with the LASCII
character set. Because the values in PEEK(999) and PEEK(1000) will not change

198

C

(usually) when another program is run, the need to run either the TEXTALKER
and load LASCII is not required each time a program is run.

The number of alternatives is determined by setting WP to a value from
1 to 5 in line 50. The variable EH is used to set the Echo to either ON
(EH=1) or OFF (EH=0). The program should be modified to read words that are
most meaningful to the student by changing or adding DATA statements beginning
line 1350.

10 REM SCAN WORD FONT
20 REM
30 DIM W$(50), W(50), WX(50)
40 D$ = CHR$(4): G$ = CHR$(5)
50 WP = 5
60 EH = 1
70 HOME
80 VTAB 2: HTAB 12: PRINT "SCAN WORD FONT"
90 VTAB 18
100 PRINT "(PRESS RETURN TO BEGIN OR Esc TO QUIT)";
110 POKE -16368,0: GET R$
120 IF ASC(R$) = 27 THEN VTAB 23: END
130 ONERR GOTO 160
140 N = N+1
150 READ W$(N): GOTO 140
160 POKE 216,0: HOME
170 N = N-1
180 PRINT
190 IF PEEK(999)=99 THEN PRINT DWPR#0": GOTO 230
200 POKE 999,99
210 PRINT D$;"BRUN TEXTALKER"
220 FOR D = 1 TO 2000: NEXT D
230 HOME
240 IF PEEK(1000) = 99 THEN 270
250 POKE 1000,99
260 PRINT D$; "BLOAD LASCII"
270 A = PEEK(43634) + PEEK(43635) * 256
280 T = INT(A/256)
290 POKE 232,A-T*256
300 POKE 233,T
310 IF EH = 1 THEN PRINT G$;"0"
320 VTAB 3: HTAB 12: PRINT "SCAN WORD FONT"
330 POKE 216,0: VTAB 22: HTAB 1
340 PRINT "(ENTER CONTROL VALUES AND PRESS RETURN)"
350 VTAB 9: HTAB 1
360 INPUT "SCAN SPEED (1=FAST, 10=SLOW): ";ST$
370 ST = VAL(ST$): IF ST < 1 THEN ST = 1
380 PRINT
390 PRINT "TACHISTOSCOPE (1=0N, 2=OFF): ";TC$
400 VTAB 15
410 PRINT "NUMBER OF WORD READ: "N
420 VTAB 22: HTAB 1: CALL -868
430 VTAB 22: HTAB 6
440 PRINT "(PRESS SWITCH OR KEY TO BEGIN";
450 GOSUB 460: GOTO 490
460 IF PEEK(-16286) > 127 OR PEEK(-16287) > 127 THEN RETURN
470 IF PEEK(-16384) > 127 THEN RETURN
480 GOTO 460
490 POKE -16368,0: HOME
500 RW = RND(-PEEK(78)*1000+PEEK(79))
510 FOR X = 1 TO N
520 RW = INT(RND(1)*N+1)
530 IF W(RW) = 1 THEN 520

199

2)0

540 W(RW) = 1
550 NA = NA+1
560 HGR2: HCOLOR=7
570 SCALE=1
580 P$(1)=WS(RW)
590 FOR K = 2 TO WP
600 RN = INT(RND(1)*N+1)
610 IF WX(RN) = 1 OR W$(RN) = P$(1) THEN 600
620 WX(RN) = 1
630 PS(K) = W$(RN)
640 NEXT K
650 V = 10: H = 100
660 W$ = W$(RW): GOSUB 700
670 V = 25: H = 5
680 W$ = " ": GOSUB 700
690 GOTO 770
700 FOR L = 1 TO LEN(WS)
710 C$ = MID$(W$,L,1)
720 C = ASC(C$)
730 DRAW C AT H,V
740 H = H+13
750 NEXT L
760 RETURN
770 IF EH = 0 THEN 790
780 PRINT GeT "W$(RN)" " Ge0"
790 IF TC$ = "2" THEN 830
800 FOR D = 1 TO 500*ST: NEXT D
810 HGR2
020 HCOLOR=7
830 V = 25
840 FOR WA = 1 TO WP
850 RN = INT(RND(1)*WP+1)
860 IF A(RN)=1 THEN 850
870 A(RN) = I: PC(WA) = RN
880 IF RN = 1 THEN CP = WA
890 V = V+25: H = 100
900 W$ = P$(RN): GOSUB 700
910 NEXT WA
920 POKE -16368,0
930 V = 50: H = 75
940 SP = 1: NS = 1
950 HCOLOR=7
960 DRAW 31 AT H,V
970 IF EH = 0 THEN 990
980 PRINT G$ "T "P$(PC(SP))" "G$"0"
990 FOR D = 1 TO ST*10
1000 IF PEEK(-16286) > 127 OR PEEK(- 16287) > 127 THEN 1070
1010 KY = PEEK(-16384): IF KY > 127 THEN 1070
1020 NEXT D
1030 HCOLOR=0: DRAW 31 AT H,V
1040 V = V+25: IF V > 25+25*WP THEN V = 50
1050 SP = SP+1: IF SP > WP THEN SP = 1
1060 GOTO 950
1070 POKE -16368,0
1080 IF KY = 155 THEN 1200
1090 V = 25+SP*25: H = 100
1100 W$ = P$(PC(SP))
1110 HCOLOR=0: GOSUB 700
1120 H = 120: HCOLOR=7: GOSUB 700
1130 FOR D = 1 TO 750: NEXT D
1140 IF SP = CP THEN 1160
1150 GOTO 1200

200

r
44

1160 W$ ="*--->": H = 20: GOSUB 700
1170 IF EH = 0 THEN 1190
1180 PRINT G$"T CORRECT! "G$ "O"
1190 SC = SC+1
1200 POKE -16368,0
1210 FOR D = 1 TO 2000: NEXT D
1220 FOR K = 0 TO WP
1230 A(K) = 0: P$(K)="": WX(K)=0
1240 NEXT K
1250 NEXT X
1260 TEXT: HOME
1270 VTAB 7
1280 PRINT "NUMBER = "N
1290 PRINT "ATTEMPTED = "NA
1300 PRINT "CORRECT = "SC
1310 END
1320 REM
1330 REM DATA STATEMENTS
1340 REM
1350 DATA HAMBURGER,TV,RADIO,FUNNY,HELP

Sentence Cloze

As a general rule, as the task complexity of a program increases so does

the amount of programming involved. The SENTENCE CLOZE program is fairly long
because sentences must not only be read but also evaluated in order to select
the correct answer as well as item alternatives.

When SENTENCE CLOZE is run, up to 50 sentences (or any string of
alphanumeric characters for that matter) are read from DATA statements. The

sentences are randomly selected for presentation. For each sentence
presented, the word to be deleted from the sentence is specified in the DATA
statements as are the incorrect alternatives.

The scanning routine in this program does not use a cursor, but
highlights each alternative being scanned by displaying the alternative in

INVERSE mode.

10 REM SENTENCE CLOZE
20 REM
30 DIM Q$(50),Q(50)
40 ONERR GOTO 80
50 N = 1
60 READ Q$(N)
70 N = N+1: GOTO 60
80 N = N-1: POKE 216,0
90 ST = 4
100 FOR Q = 1 TO N
110 RQ = INT(RND(1)*N+1)
120 IF Q(RQ) = 1 THEN 110
130 Q(RQ) = 1
140 HOME
150 P$(0) = "": QP = 0
160 FOR L = 1 TO 1000: NEXT L
170 PRINT "SENTENCE #"Q
180 VL = 5
190 VTAB VL
200 FOR C = 1 TO LEN(Q$(RQ))
210 L$ = MID$(Q$(RQ),C,1)
220 IF L$ = "/" THEN 260
230 P$(QP) = P$(QP)+L$

201

n

240 IF C = LEN(Q$(RQ)) THEN 260
250 GOTO 280
260 QP = QP+1: P$(QP) = ""
270 IF QP = 7 THEN 290
280 NEXT C
290 QP = QP-1: HTAB 1
300 FOR C = 1 TO LEN(P$(0))
310 L$ = MID$(P$(0),C,1)
320 IF L$ = " " THEN 370
330 IF L$ = "=" THEN L$ = "
340 U$ = U$+L$
350 IF C = LEN(P$(0)) THEN 370
360 GOTO 440
370 IF LEN(U$)+P+1 > 39 THEN 410
380 U$ = U$ + " ": PRINT U$;
390 P = P + LEN(U$)
400 U$ = "": GOTO 440
410 PRINT: PRINT U$" ";
420 P = LEN(U$)+1: U$ = ""
430 VL = VL+1
440 NEXT C. P = 0
450 VL = VL+2
460 FOR K = 1 TO QP
470 A(K) = 0: NEXT K
480 FOR QA = 1 TO QP
490 RN = INT(RND(1)*QP+1)
500 IF A(RN) = 1 THEN 490
510 A(RN) = 1: PC(QA) = RN
520 IF RN = 1 THEN CP = QA
530 VTAB VL+QA*2: HTAB 10
540 PRINT P$(RN)
550 NEXT QA
560 SP = 1
570 INVERSE
580 VTAB VL+SP*2: HTAB 10
590 PRINT P$(PC(SP)): NORMAL
600 FOR D = 1 TO ST*20
610 IF PEEK(-16287) > 127 THEN 680
620 IF PEEK(-16384) = 155 THEN 800
630 NEXT D
640 VTAB VL+SP*2: HTAB 10
650 PRINT P$(PC(SP))
660 SP = SP+1: IF SP < = QP THEN 570
670 SP = 1: GOTO 570
680 VTAB VL+SP*2: HTAB 1: CALL -868
690 INVERSE
700 VTAB VL+SP*2: HTAB 12
710 PRINT P$(PC(SP)): NORMAL
720 FOR L = 1 TO 500: NEXT L
730 IF SP = CP THEN 750
740 GOTO 780
750 VTAB VL+CP*2: HTAB 1
760 INVERSE
770 PRINT "CORRECT! ": NORMAL
780 FOR L = 1 TO 2000: NEXT L
790 NEXT Q
800 POKE -16368,0
810 VTAB 23: END
820 DATA WHAT=IS IT?/TIME/SAW/GO/LUNCH
830 DATA HE IS A VERY TALL=./MAN/GIRL/WOMAN/SHORT
840 DATA I=HUNGRY./AM/IS/ARE/ME

202

(1
ti

Each DATA statement is comprised of three parts: STEM, CORRECT
ALTERNATIVE and INCORRECT ALTERNATIVES. Each DATA statement part is separated

by a slash (/). The order for entering items is always to enter the STEM

first, followed by the correct answer, and then followed by the incorrect

alternatives. When the item is displayed, the program automatically
randomizes the alternatives. The equal (=) symbol in the stem component
signifies where a space is inserted in place of the missing word when the stem,

is displayed on screen.

The following illustrates how to add additional sentences to the program:

850 THE=BOAT IS IN THE WATER./BOAT/PLANE/CAR/TRAIN

Because each item is scanned using inverse mode, the program must be
modified in order to use lowercase letters in that there are no lowercase
letters when characters are displayed in inverse mode. This is accomplished
by using a cursor to scan each choice.

580 VTAB VL+SP*2: HTAB 6
590 PRINT " ": NORMAL
640 VTAB VL+SP*2: HTAB 6
650 PRINT " "

690

With the above modifications in place, both upper- and lowercase letters

can be used in sentence items as shown by the following spelling item:

860 That=is made of brick. /building/bildin/bilden/billding

Of course, if a II+ is being used, the use of lowercase characters is not be

possible without 80-column card.

In order to provide summary feedback, the number of correct answers can
be tallied and summarized after the task has been concluded. The variable CR

is used to tally correct answers by adding line 775:

775 CR = CR+1

And the number of corr items can then be displayed at the conclusion of the

end of the program:

801 PRINT
802 PRINT "NUMBER OF ITEMS = "N
803 PRINT "NUMBER CORRECT = "CR

To determine the percent of correct answers, add variable IA (items
attempted) in line 105, and then add lines 804 and 805:

105 IA = IA+1
804 PRINT "ITEMS ATTEMPTED = "IA
805 PRINT "PERCENT CORRECT = "INT(CR/IA*100+.5)

A Column Matching Task

The following program entitled COLUMN MATCHING demonstrates show the
single switch concept can be applied to a variety of assessment tasks. This

program reads up to 20 pairs of words and then creates a single switch column

matching task. Consider the following pairs of words: CAR/AUTOMOBILE,

COLOR/WHITE, LAUGH/SMILE, EARTH/PLANET, READ/BOOK.

After these words had been read from DATA statements (beginning in line

203

1. 4 it

1100), the words are displayed in the format shown below. Because the words
are randomly arranged, the exact position of the words changes each time the
program is run.

II CAR A PLANET
EARTH B WHITE
READ C BOOK
COLOR D SMILE
LAUGH % AUTOMOBILE

Each stimulus item in the left-hand column is first identified by the

cursor. While each stimulus item is being identified, the alternative items

in the right-hand column are scanned by highlighting each corresponding
alternative item letter in sequential order. After a match is found for the
firs* stimulus item in the left-hand column, the letter corresponding to the
alternative selected is displayed next to the stimulus item. The symbol >
indicates that an alternative item has already been chosen as a match.

E CAR > PLANET
A EARTH > WHITE
C READ > BOOK
B COLOR D SMILE

In LAUGH > AUTOMOBILE

After the last item has been presented, answers are checked and summary

feedback given. This is not an easy task, but for some students it can

provide a useful and interesting variation to the traditional form of single

switch scanning task.

The pairs of words are read from DATA statements beginning in line 1100.

The program reads up to 20 pairs of words. If fewer than 20 pairs are used
(and it might be wise to begin with three or four pairs when first presenting
this task), the program automatically adjusts itself to scan the exact number

of items specified.

10 REM COLUMN MATCHING
20 REM
30 HOME
40 L$ = "MATCHING"
50 VTAB 2: HTAB 20-LEN(L$)/2
60 SM = 5
70 1-RINT L$
80 VTAB 22: HTAB 3
90 PRINT "(ENTER SCAN SPEED AND PRESS RETURN)"
100 VTAB 9: HTAB 1
110 INPUT "SCAN SPEED: (1=FAST, 10=SLOW): ";ST$
120 IF ST$ < "1" THEN ST$="1"
130 ST = VAL(ST$)
140 VTAB 15: HTAB 13
150 PRINT "(READING ITEMS)"
160 M = 20
170 DIM S$(M),SS$(M),R$(M),RR$(M),

17(14) 'RFS (M) ,C$ (M) ,A$ (M)

180 ONERR GOTO 270
190 N = 1
200 READ S$(N), R$*N)
210 S$(N) = LEFT$(S$(N),16)
220 R$(N) = LEFT$(R$(N),16)
230 IF N = 20 THEN 290
240 N = N+1
250 IF N > 15 THEN N = 15: GOTO 280
260 GOTO 200

204

270 N = N+1
280 POKE 216,0
290 R = RND(-PEEK(78)*1000+PEEK(79))
300 FOR K = 1 TO N
310 R = INT(RND(1)*N)+1
320 IF V(R) = 1 THEN GOTO 310
330 V(R) = 1
340 SS$(X) = S$(R)
350 RR$(X) = R$(R)
360 NEXT X
370 FOR K = 1 TO N
380 V(K) = 0
390 NEXT K
400 DOE X = 1 TO N
410 R = INT(RND(1)*N)+1
420 IF V(R) = 1 THEN 410
430 V(R) = 1
440 C$(X) = CHR$(64+R)
450 RF$(R) = RR$(X)
460 NEXT X
470 VTAB 4: CALL -958: VTAB 5
480 FOR K= 1 TO N
490 PRINT TAB(3); SS$(K); TAB(22);
500 PRINT CHR$(64+K); TAB(24); RF$(K)
510 NEXT K
520 X = 1: Y = 1: POKE -16368,0
530 VTAB X+4: HTAB 1
540 INVERSE: PRINT " ": NORMAL
550 VTAB Y+4: HTAB 22
560 INVERSE: PRINT CHR$(64+Y)
570 NORMAL
580 FOR D = 1 TO ST*SM
590 IF PDL(0) < 20 THEN 680
600 IF PEEK(-16286) > 127 OR PEEK(-16287) r 127 THEN

680
610 KY = PEEK(-16384): IF KY > 127 THEN 680
620 NEXT D
630 VTAB Y+4: HTAB 22: PRINT CHR$(64+Y)
640 Y = Y+1: IF Y > N THEN Y = 1
650 VTAB Y+4: HTAB 22
660 INVERSE: PRINT CHR$(64+Y): NORMAL
670 GOTO 580
680 POKE -16368,0
690 IF KY = 155 THEN 830
700 IF KY = 139 THEN 730
710 A = 64+Y: A$(X) = CHR$(64+Y)
720 GOTO 770
730 VTAB X+4: HTAB 1: PRINT " "

740 VTAB HTAB 1: PRINT A$(X)
750 X = X-1: IF X < 1 THEN X = 1
760 GOTO 530
770 VTAB X+4: HTAB 1: PRINT A$(X)
780 VTAB A-60: HTAB 21: PRINT ">"CHR$(64+Y)
790 X = X+1: Y = 1
800 FOR L = 1 TO 500: NEXT L
810 IF X > N THEN 830
820 GOTO 530
830 VTAB 23: HTAB 2
840 PRINT "(CORRECT ANSWERS WILL BE SHOWN ABOVE)"
850 FOR L = 1 TO 1500: NEXT L
860 FOR K= 1 TO N
870 HTAB 22: CALL -868

205

k+ti 6

880 IF C$(K) < > A$(K) THEN 910
890 C = C+1
900 INVERSE
910 VTAB K+4: HTAB 22
920 PRINT C$(K);" ";RR$(K);
930 CALL -868: PRINT: NORMAL
940 NEXT K
950 VTAB 23: CALL -868: VTAB 23
960 PRINT "NUMBER CORRECT = "C
970 HTAB 25: PRINT "(PRESS RETURN)";
980 POKE -16368,0: GET R$
990 VTAB 4: CALL -958
1000 VTAB 5: HTAB 1
1010 PRINT "PERFORMANCE SUMMARY:"
1020 PRINT
1030 PRINT "NUMBER OF ITEMS = "N
1040 PRINT "NUMBER CORRECT = "C
1050 PRINT "PERCENT CORRECT = "INT(C/N*100+.5)
1060 END
1070 REM
1080 REM DATA STATEMENTS
1090 REM
1100 DATA HORSE,ANIMAL
1110 DATA BIG,LARGE
1120 DATA CAR,AUTOMOBILE
1130 DATA COLOR,WHITE
1140 DATA SPEAK,TALK
1150 DATA LAUGH,SMILE
1160 DATA EARTH, PLANET
1170 DATA RUN,WALK
1180 DATA FORK, SPOON
1190 DATA READ,BOOK

Reading Comprehension

Switch Reader

If a student has developed sufficient reading skills, the time is right

to begin considering various single switch word processing approaches that can

be used to developed reading and writing skills. Needless to say, a single
switch word processor requires a rather extensive program, but a single switch

system for presenting sentences, passages, and stories can be developed that
is not overly complex and very easy-to-use.

The sentences for the SWITCH READER are contained in DATA statements
beginning in line 660. Notice that each DATA statement begins with quotation

marks. If commas are not used, this is not necessary. However, if a comma
is used as the case in lines 690 and 700, the DATA statement must begin with
quotation marks so that the entire line is read as one string.

10 REM SWITCH READER
20 REM
30 DIM L$(75)
40 N = 1
50 °NEPA GOTO 80
60 READ L$(N)
70 N = N+1: GOTO 60
80 N = N-1: POKE 216,0
90 HOME
100 VTAB 2: HTAB 11

206

110 PRINT "SINGLE SWITCH READER"
120 VTAB 7
130 INPUT "SCAN SPEED (1=FAST, 9=SLOW): ";ST$
140 ST = VAL(ST$): IF ST < 1 THEN ST = 5
150 FOR K = 1 TO 40
160 E$ = E$+" ": NEXT K
170 C$(1) = "<": C$(2) = ">"
180 P = 1: SP = 1
190 HOME
200 INVERSE
210 VTAB 3: PRINT E$
220 VTAB 19: PRINT E$
230 NORMAL
240 VTAB 2: PRINT "LINE = "LN
250 VTAB 2: HTAB 15: PRINT "PAGE = "P" "

260 VTAB 2: HTAB 31: PRINT "TEXT = "N
270 FOR K = 1 TO 2
280 VTAB 22: HTAB 17+(K+1)*6
290 IF SP = K THEN INVERSE
300 PRINT C$(K): NORMAL: NEXT K
310 IF PEEK(-16287) > 127 THEN 310
320 FOR D = 1 TO ST*10
330 IF PEEK(-16287) > 127 THEN 380
340 KY = PEEK(-16384): IF KY = 155 THEN 600
350 NEXT D
360 SP = SP+1: IF SP > 2 THEN SP = 1
370 GOTO 240
380 IF SP = 2 THEN 500
390 LN = LN-1: IF LN < 1 THEN 410
400 GOTO 240
410 LN = 7: P = P-1: IF P < 1 THEN P = 1
420 FOR K = 5 TO 17
430 VTAB K: PRINT E$: NEXT K
440 LN = 7
450 FOR K = 7 TO 1 STEP -1
460 SL = (P-1)*7+K
470 VTAB K*2+3
480 PRINT L$(SL): NEXT K
490 GOTO 240
500 LN = LN+1: IF LN > 7 THEN 530
510 GOTO 560
520 LN = 1: P = P+1
530 IF P > 10 THEN P = 1
540 FOR K = 5 TO 17
550 VTAB K: PRINT E$: NEXT K
560 SL = (P-1)*7+LN
570 VTAB LN*2+3
580 PRINT L$(SL)
590 GOTO 240
600 POKE -16368,0
610 END
620 REM
630 REM DATA STATEMENTS
640 REM
650 DATA "THIS IS A STORY ABOUT A DOG. THE DOG'S
660 DATA "NAME IS FRED. FRED IS A FUNNY DOG.
670 DATA "FRED TALKS!
680 DATA "WHEN FRED IS HAPPY, HE WAGS HIS TAIL
690 DATA "WHEN FRED IS HUNGRY, HE BANGS HIS BOWL

To enter data directly from a text file, make these modifications:

207

0

45 D$ = CHR$(4)
46 F$ = "STORY"
47 HOME
55 PRINT D$;"OPEN"F$
56 PRINT D$;"READ"F$
60 INPUT L$(N)
80 POKE 216,0
85 PRINT D$;"CLOSE"F$

To view the file as it is being read from disk, enter the following:

52 PRINT D$;"MON C,I,O"
81 GET KY$

Press RETURN to begin the program after the file items have been read.

Text File Maker

The above modification is not very useful if there is no way to create

a text file. The following short program can be used to create a text file

by means of INPUT statements. However, this is an intentionally uncomplicated
program so don't expect much in the way of word processing frills.

To use the program, enter the sentence number and then the sentence. To
file the sentences (or strings), enter a /; to exit, enter * (see lines 120

and 130). When used with the SINGLE SWITCH READER, sentences should be 40

characters of less.

The CHR$(34) in line 210 is the ASCII equivalent of a quotation marks.

This allows the use commas in sentences. However, quotation marks within
sentences cannot be used. If quotes are needed, use two single quotation mark

(e.g., " rather than ").

10 REM TEXT FILE MAKER
20 REM
30 DIM L$(100)
40 HOME
50 D$ = CHR$(4)
60 F$ "STORY"
70 PRINT
80 INPUT "SENTENCE #, /=FILE, *=EXIT: ";N$
90 N = VAL(N$)
100 IF N > M THEN M = N
110 IF N > 1 THEN 140
120 IF N$ = "/" THEN 160
130 IF N$ = "*" THEN 250
140 INPUT "";L$(N)
150 GOTO 70
160 PRINT D$;"OPEN "F$
170 PRINT D$;"DELETE "F$
180 PRINT D$;"OPEN "F$
190 PRINT D$; "WRITE "F$
200 FOR K= 1 TO M
210 PRINT CHR$(34)+L$(K)
220 NEXT K
230 PRINT D$;"CLOSE "F$
240 GOTO 80
250 VTAB 23
260 END

208

2,1"i9

Text File Reader

Text files are designated by a T in the catalog. In order to see the
contents of a text file withollt actually running the program that uses the

file, run TEXT FILE READER and enter the text file to be read following the

prompt. This program reads each line of the file, stores the line in the
string variable L$, and then prints L$. When the program attempts to read
beyond the last line of a file, an error is detected and the file is closed

in line 170.

10 REM TEXT FILE READER
20 REM
30 D$ = CHR$(4)
40 HOME
50 VTAB 5
60 PRINT D$;"MON C"
70 INPUT "FILE NAME: ";F$
80 ONERR GOTO 160
90 PRINT D$;"OPEN ";F$
100 PRINT D$;"READ ";F$
110 PRINT
120 INPUT L$
130 PRINT L$
140 FOR L = 1 TO 50: NEXT L
150 GOTO 120
160 PRINT
170 PRINT D$;"CLOSE ";F$

Using Word Processor Files

Although most word processor text files can be accessed, there could be

a problem when reading the file because the format for storing text on disk
varies from one word processor to the next. With this word of caution in
mind, SWITCH READER-2 loads a word processing file to be used as the text
source within the program:

10 REM SWITCH READER-2
20 REM
30 DIM L$(500)
40 N = 1
50 HOME
60 F$ = "ONE.MW"
70 PRINT CHR$(4);"BLOAD"F$
80 BA = PEEK(43634) + PEEK(43635) * 256
90 HIMEM: BA-1
100 BL = PEEK(43616) + PEEK(43617) * 256
110 FOR K = BA+256 TO BA+BL
120 PK = PEEK(K)
130 IF PK = 13 OR PK = 141 THEN PK = 32
140 C = C+1: IF C > 38 THEN 75
150 GOTO 180
160 C = 0: N = N+1
170 IF PK = 0 THEN 210
180 L$(N) = L$(N)+CHR$(PK)
190 PRINT CHR$(PK);
200 NEXT K
210 HOME
220 VTAB 2: HTAB 13
230 PRINT "SWITCH READER-2"
240 VTAB 7
250 INPUT "SCAN SPEED (1=FAST, 9=SLOW): ";ST$

209

260 ST = VAL(ST$): IF ST < 1 THEN ST = 5
270 FORK= 1 TO 40
280 E$ = E$+" ": NEXT K
290 C$(1) = "<": C$(2) = ">"
300 P = 1: SP = 1
310 HOME
320 INVERSE
330 VTAB 3: PRINT E$
340 VTAB 19: PRINT E$
350 NORMAL
360 VTAB 2: PRINT "LINE = "LN
370 VTAB 2: HTAB 15: PRINT "PAGE = "P" "
380 VTAB 2: HTAB 31: PRINT "TEXT = "N
390 FOR K = 1 TO 2
400 VTAB 22: HTAB 17+(K-1)*6
410 IF SP = K THEN INVERSE
420 PRINT C$(K): NORMAL: NEXT K
430 IF PEEK(-16287) > 127 THEN 430
440 FOR D = 1 TO ST*10
450 IF PEEK(-16287) > 127 THEN 500
460 KY = PEEK(-16384): IF KY = 155 THEN 720
470 NEXT D
480 SP = SP+1: IF SP > 2 THEN SP = 1
490 GOTO 360
500 IF SP = 2 THEN 620
510 LN = LN-1: IF LN < 1 THEN 530
520 GOTO 360
530 LN = 7: P = P-1: IF P < 1 THEN P = 1
540 FOR K = 5 TO 17
550 VTAB K: PRINT E$: NEXT K
560 LN = 7
570 FOR K = 7 TO 1 STEP -1
580 SL = (P-1)*7+K
590 VTAB K*2+3
600 PRINT L$(SL): NEXT K
610 GOTO 360
620 LN = LN+1: IF LN > 7 THEN 640
630 GOTO 680
640 LN = 1: P = P+1
650 IF P > 10 THEN P = 1
660 FOR K = 5 TO 17
670 VTAB K: PRINT E$: NEXT K
680 SL = (P-1)*7+LN
690 VTAB LN*2+3
700 PRINT L$(SL)
710 GOTO 360
720 POKE -16368,0
730 END

In the above program, string variable F$ in line 60 is used to specify

the name of the word processor file. Remember to use the name of the file
that is actually on'the disk. Because it is sometimes difficult to determine
exactly where the text in a word processor file begins, a bit of

experimentation with line 110 might be required.

The HIMEM: instruction in line 90 is used to reset memory so that the

string variables are stored immediately below the text file rather than at the

usual HIMEM starting point of 38400. The starting location of the text file
is indicated by variable BA (line 80).

210

Database Applications

A database can be used to retrieve data for use within a program, or to

store data on disk for use or consideration at a later time. The one
important feature of most database systems is the ability to change and modify
the data. The following section uses the READ program discussed in the last
section to illustrate three important database applications:

1) Database Control Variables
2) Text Database Systems
3) Results Database Systems

Although these database systems are used within the context of a

particular program, the underlying database principles can be used with many
of the program discussed in this manual.

Database Programming

The READ-2 program listed below contains three types of database systems
involving control variables, text data, and results. The software required
to read/modify these databases are discussed in the following sections.

Thc ,.ctual purpose of READ-2 is similar to that of READ, except that the
words are flashed on the screen tachistoscopically as a function of the scan
speed which is read from a disk file called CONTROL.SW.

When READ-2 is run, the program reads a file from disk containing up to

N words. The words are stored in W$(K) as shown in line 160. Next, the scan

speed is read from disk. This option is useful if the scan speed remains
relatively constant from one program run to the next, and if a disk contains

a variety of programs. Thus, changing the scan speed on disk is all that is

necessary to change the scan speed for all the programs using the scan speed

database option. If the scan speed has not been set using the scan speed

create program called DOS CONTROL, the scan speed is automatically set to 5

(see line 270).

Finally, the results of the program are stored on disk using the DOS
APPEND command (line 840). This command adds the results to the text file
immediately after the last record (i.e., line of data) in the file.

10 REM READ-2
20 REM
30 DIM W$(50),W(50),A(50)
40 HOME
50 VTAB 5
60 INPUT "ENTER FILE NAME: ";F$
70 CR$ = " "

80 AL = 4
90 D$ = CHR$(4)
100 ONERR GOTO 160
110 PRINT D$; "OPEN "F$
120 PRINT D$;"READ "F$
130 INPUT N
140 FOR K = 1 TO N
150 INPUT W$(K): NEXT K
160 PRINT D$;"CLOSE "F$
170 POKE 216,0
180 VTAB 10: PRINT "ITEMS IN FILE: "N
190 CF$ = "CONTROL.SW"
200 ONERR GOTO 240
210 PRINT D$; "OPEN "CF$

211

2 1 2

220 PRINT D$;"READ "CF$
230 INPUT ST$
240 PRINT D$;"CLOSE "CF$
250 POKE 216,0
260 ST = VAL(ST$)
270 IF ST < 1 THEN ST = 5
280 FOR W = 1 TO N: A = A+1
290 RW = INT(RND(1)*N+1)
300 IF W(RW) = 1 THEN 290
310 W(RW) = 1
320 HOME: VL = 7
330 CP = INT(RND(1)*AL+1)
340 A$(CP) = W$(RW)
350 VTAB 5: HTAB 16
360 PRINT A$(CP)
370 FOR L = 1 TO 200*ST: NEXT L
380 VTAB 5: CALL -868
390 FOR K = 1 TO AL
400 IF K = CP THEN 450
410 RN = INT(RND(1)*N+1)
420 IF A(RN) = 1 OR RN = RW THEN 410
430 A(RN) = 1
440 A$(K) = W$(RN)
450 VTAB VL+K*2: HTAB 16
460 PRINT A$(K)
470 NEXT K
480 P = 1
490 INVERSE
500 VTAB VL+P*2: HTAB 13
510 PRINT CR$: NORMAL
520 FOR D = 1 TO ST*30
530 IF PEEK(-16287) > 127 THEN 600
540 KY = PEEK(-16384): IF KY > 127 THEN 600
550 NEXT D
560 VTAB VL+P*2: HTAB 13
570 PRINT CR$
580 P = P+1: IF P < = AL THEN 490
590 P = 1: GOTO 490
600 POKE -16368,0
610 IF P = CP THEN 630
620 GOTO 670
630 VTAB VL+CP*2: HTAB 6
640 INVERSE
650 PRINT "CORRECT! ": NORMAL
660 C = C+1
670 FOR L = 1 TO 2000: NEXT L
680 IF KY = 155 THEN 710
690 FOR K = 1 TO N: A(K) = 0: NEXT K
700 NEXT W
710 DF$="RESULTS.DATA"
720 HOME: VTAB 3
730 PRINT "RESULTS:"
740 PRINT
750 PRINT "ITEMS = "N
760 PRINT "ATTEMPTED = "A
770 PRINT "CORRECT = "C
780 PRINT "PERCENT = "INT(C/A*100+.5)
790 DS$ = STR$(N)+" " + STR$(A) + " " + STR$(C)
800 ONERR GOTO 820
810 GOTO 840
820 POKE 216,0 -
830 PRINT D$;"OPEN "DF$

212

t_r

840 PRINT D$;"APPEND "DF$
850 PRINT D$;"WRITE "DF$
860 PRINT DS$
870 PRINT D$;"CLOSE "DF$
880 END

The first database system is located in lines 100 to 180. The number of
words in the file is read from the file via the INPUT statement in line 130
and the words are read into W$(K) in line 150. Line 110 "opens" the file
specified in F$. while line 120 gives the instruction to "read" data from the
file. After all the words have been read, the file is closed in line 160.

The second database component is located in lines 200 to 270. This file
is specified by variable CF$ and contains the scan speed used to determine the
amount of time each word is scanned and also the length of time each word is
tachistoscopically displayed on screen. The ONERR loop in 200 insures that
if there is no scan speed data file, the program loops to line 240 rather than
interrupting and ending the program run. The POKE in line 250 deactivates the
ONERR function so that if an error occurs elsewhere in the program, control
is not automatically shifted to line 240.

Before running the READ-2 program, the READ AUTHOR program is used to
create the word or item database. When the program is run, enter the name of
the word file containing the words to be used by the program.

The last database system is located in lines 800 to 870. There are
several Applesoft DOS methods that can be used to store and retrieve results
from disk. The routine used in READ-2 is not elaborate but it does work and
can be used to store a large number of data files. The APPEND command in line
840 signifies that the data record is "appended" to the data file; that is,
the record is to be stored after the last existing record in DF$. The actual
data record is stored as a string by condensing all the relevant summary data
to a single variable string. The spaces are included in the string so as to
facilitate file interpretation when the data file is retrieved from disk by
means of the RESULTS READER program.

If no data exists in the RESULTS.DATA file, a file by this name is opened
(i.e., created) by means of the ONERR routine in lines 800 to 830.

The name of the file in the READ-2 program is preset by

60 F$ = "WORDS"

The program is set to flash words tachistoscopically by means of lines 370 and
380. This option is deactivated and the word or string presented remains on
the screen by deleting these lines 370 and 380.

Creating/Modifying Database Files

The database systems described in the READ-2 program work in conjunction
with the following three programs: DOS CONTROL, READ AUTHOR and RESULTS
READER. The data contained in these files is stored on disk as text files.
If all three systems are used, the disk catalog entries will look something
like this:

T 002 CONTROL.SW
T 002 WORDS
T 002 RESULTS

The second text file can contain up to 75 words or strings. The actual size
of the file will vary depending on the number and length of individual words

213

and/or strings. Each word file must be stored on dis:;.. using a different file
name.

DOS CONTROL: This program creates a text file in which scan speed is
stored and then retrieved for use in the READ-2 program. The DOS instruction
in line 50 is a monitor command and is used to MONitor Commands to the disk
(C), Input from the disk (I) and Output to the disk (0). To turn off the MON
command, the following is used:

PRINT D$;"NOMON C,I,O"

The current scan speed in CONTROL.SW is retrieved by lines 80 to 140.
After the new scan speed has been specified (line 200), the scan speed is

stored in CONTROL.SW.

Before entering the new scan speed in the file, the file is deleted and
then re-opened for the new scan speed in line 240. To enter data into a text
file, the DOS Write command is given in line 250. Data is actually written
into the file by means of PRINT statements (line 260).

10 REM DOS CONTROL
20 REM
30 HOME
40 D$ = CHR$(4)
50 PRINT D$; "MON C,I,O"
60 PRINT
70 ONERR GOTO 140
80 F$ = "CONTROL.SW"
90 PRINT D$;"OPEN "F$
100 PRINT DWREAD "F$
110 INPUT ST$
120 ST = VAL(ST$)
130 PRINT D$;"CLOSE "F$
140 POKE 216,0
150 HOME: HTAB 3
160 PRINT: PRINT: PRINT "SCAN SETTING:"
170 PRINT
180 PRINT "CORRECT SETTING: "ST$
190 PRINT: PRINT
200 INPUT "SCAN SPEED (1=FAST TO 10=SLOW): ";ST$
210 PRINT: PRINT
220 PRINT D$;"OPEN "F$
230 PRINT D$;"DELETE "F$
240 PRINT D$;"OPEN "F$
250 PRINT D$;"WRITE "F$
260 PRINT ST$
270 PRINT D$;"CLOSE "F$
280 END

READ AUTHOR: The READ AUTHOR program is an authoring system for creating
text files in which the file can have as many as 75 items, and each item can

be up to 28 characters in length. An item can be a word, characters, phrase
or even mathematical statements (e.g., 3 + 12 + 9 = 24).

As indicated by several of the lines in the following program, the actual
code for an authoring system can be fairly complex. Without going into too
much detail, the heart of the program is line 340 which reads keyboard input
character-by-character using variable C$. The CHR$ statements determine
whether an arrow key or the RETURN key has been pressed, or whether a line has
been deleted (line 390) or the filing routine initiated (line 360). Note that

in line 360, CHR$(6) is equivalent to CONTROL+F which is the command used tb

214

file the text.

10 REM READ AUTHOR
20 REM
30 VS = 75
40 DIM WCVS)
50 HOME: VTAB 2: HTAB 10
60 FOR K = 1 TO 40: H$ = H$+"-": NEXT K
70 PRINT "READING AUTHORING SYSTEM"
80 D$ = CHR$(4)
90 VTAB 4: PRINT H$
100 VTAB 20: PRINT H$
110 VTAB 7
120 INPUT "FILE NAME: ";F$
133 ONERR GOTO 200
14C PRINT D$;"OPEN "F$
150 PRINT D$; "READ "F$
160 INPUT N
170 FOR K = 1 TO N
180 INPUT W$(K): NEXT K
190 PRINT D$;"CLOSE "F$
200 POKE 216,0
210 VTAB 7: CALL -868
220 VTAB 21: HTAB 1
230 PRINT "CONTROL+F = QUIT, CONTROL+X = ERASE LINE";
240 PRINT " ---USE ARROW KEYS TO MOVE CURSOR---";
250 PRINT: P = 1: VN = 1
260 PRINT
270 FOR K = P TO P+14
280 LN = LN+1: VTAB LN+4: HTAB 1
290 PRINT "WORD ";
300 IF K < 10 THEN PRINT SPC(1);
310 PRINT K": "W$(K);: CALL -868
320 NEXT K: LN = 0
330 VTAB VN+4: HTAB 10+HT
340 POKE -16368,0: GET C$
350 IF C$ > CHR$(31) THEN 450
360 IF C$ = CHR$(6) THEN 670
370 IF C$ = CHR$(8) THEN 530
380 IF C$ = CHR$(11) THEN 630
390 IF C$ < > CHR$(24) THEN 420
400 W$(P +VN -i) = "": HT = 0
410 VTAB VN+4: HTAB 10: CALL -868: GOTO 330
420 IF C$ = CHR$(13) OR C$ = CHR$(10) THEN 590
430 IF C$ = CHR$(21) THEN HT = HT+1: IF HT > 30 THEN HT =

30
440 GOTO 330
450 IF HT = 28 THEN 340
460 IF HT > 0 THEN 490
470 VTAB VN+4: HTAB 10: CALL -868
480 VTAB VN+4: HTAB 10: W$(P+VN-1) = ""
490 W$(P+VN-1) = W$(P+VN-1) + C$
500 PRINT C$;: HT = HT+1
510 POKE 216,0
520 GOTO 340
530 IF LEN(W$(P+VN-1)) < 2 THEN W$(P+VN-1) = "": GOTO 550

540 W$(P+VN-1) = MID$(W$(P+VN-1), 1, LEN(W$(P+VN-1)) - 1)

550 VTAB VN+4: HTAB 10
560 PRINT W$(P+VN-1);: CALL -868
570 HT = HT-1: IF HT < 0 THEN HT = 0
580 JOT() 330
590 VN = VN+1: IF VN = 16 THEN VN = 1: GOTO 610

215

6

600 HT = 0: GOTO 330
610 P = P+15: HT ac 0: IF P > VS-14 THEN P = VS-14

620 GOTO 260
630 VN = VN-1: IF VN = 0 THEN VN = 15: GOTO 650

640 HT = 0: GOTO 330
650 P = P-15: HT = 0: IF P < 1 THEN P = 1

660 HT = 0: GOTO 260
670 N = 1
680 FOR K = 1 TO VS
690 IF W$(K) = "" THEN 710
700 W$(N) = W$(K): N = N+1
710 NEXT K: N = N-1
720 NN = N
730 HOME: VTAB 5
740 PRINT D$;"OPEN "F$: PRINT D$;"DELETE "F$
`,50 PRINT D$;"OPEN "F$: PRINT D$;"WRITE"F$
760 PRINT N
770 FOR K = 1 TO N
780 PRINT W$(K): NEXT K
790 PRINT D$; "CLOSE "F$
800 END

RESULTS READER: Programs which are used to access and read database

results can be extremely involved and can contain a great many options. The

RESULTS READER program illustrates a simple technique for retrieving data from

disk. The program reads the various records in the database file, and lists

each record immediately after it has been read. The data within each record

can be further analyzed by separating the three components comprising each

record (number of items, number attempted, and number correct) by means of the

space separating each record component.

10 REM RESULTS READER
20 REM
30 HOME: VTAB 3
40 D$ = CHR$(4)
50 F$ = "RESULTS"
60 PRINT F$" DATABASE: "
70 PRINT
80 ONERR GOTO 160
90 PRINT D$;"OPEN "F$
100 PRINT D$; "READ "F$
110 INPUT SD$
120 N = N+1
130 PRINT "#"N" "SD$
140 PRINT
150 GOTO 110
160 PRINT D$;"CLOSE "F$
170 POKE 216,0
180 END

216

References
Apple II Reference Manual. Cupertino, California: Apple Computer Inc.,

1981.

Apple II DOS Manual. Cupertino, California: Apple Computer Inc., 1981.

Biklen, D.
Review,

Burns, E.

Burns, E.
Reston,

Communication unbound: autism and pra:ds, Harvard Educational
1990, 60, 291-314.

TRS-80 Teaching Aid. Reston, Virginia: Reston, 1981.

The Apple Math and Reading Development Kit. Reston, Virginia:
1985.

Burns, E. AUTOSCAN: An adaptive multiple-choice BASIC computer program.
Journal of School Psychology, 1988, 26, 311-315.

Burns, E. A primary fact scan program, Closing the Gap, 1989, 7, 22-23;

Single switch letter identification, 1990, 8, 10-11; Vertical scan
speech (VSS), 1990, 9, 16-17.

Burns, E. and Mistrett, S. Switchware technology: improving computer usage
for students with physical or motor impairments. Educational Technology,

1989, 28, 45-47.

Burns, E. and Mistrett, S. Assessing and modifying random keyboard

behavior. Closing the Gap, 1988, 6, 22-23.

Clute, A. and Eddy, J. Touch Window Toolkit: Apple II Version - Rev. 1.0.

San Jo'e, California: Personal Touch Corporation, 1985.

Apple II ProDOS User's Manual. Cupertino, California: Apple Computer Inc.,

1983.

Applesoft Tutorial. Cupertino, California: Apple Computer Inc., 1981.

Applesoft BASIC Programming Reference Manual. Cupertino, California: Apple

Computer Inc., 1981.

Echo lib Speech Synthesizer: Santa Barbara, California: Street Electronics
Corporation, 1986.

Haskell, Richard. Apple BASIC. Englewood Cliffs, New Jersey: Prentice-

Hall, 1982.

IBM BASIC Reference Manual. International Business Machines, 1984.

Inme.n, Don and Inman, Kurt. Apple Machine Language. Reston, Virginia:

Reston, 1981.

217

